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Chapter 1 

GENERAL INTRODUCTION 

Leishmaniasis 

Introduction and epidemiology 

Leishmaniasis is a vector-borne zoonotic disease caused by obligate 

intracellular protozoan parasites of the genus Leishmania.  This disease is classified 

geographically into New World, which occurs in Central and South America and Old 

World, present in Africa, Asia, the Middle East and the Mediterranean (19, 65).  

There are an estimated 12 million cases of leishmaniasis worldwide with 2 million 

new cases per year (65).  Although endemic in the tropics, sporadic cases have 

been reported in the United States, usually from travelers returning from an endemic 

area.  The incidence of leishmaniasis in the United States is of growing concern 

however, as greater than 600 cases of cutaneous leishmaniasis and 4 cases of 

visceral leishmaniasis were diagnosed in the United States in 2004, primarily due to 

an increasing number of soldiers returning from Iraq, Kuwait, and Afghanistan (108).  

In 2000, Leishmania infantum, the causative agent of zoonotic visceral 

leishmaniasis, was found to have killed four foxhounds in New York (27).  There is a 

possibility for spread of this disease to both dogs and humans, as dogs are one of 

the primary domestic reservoirs in locations endemic for human disease (22).  

Because Leishmania infection has been shown to exhibit primary and secondary 

resistance to standard treatments (92, 93), continued research is vital to determine 

protective immune responses to this parasite and to formulate new vaccination and 

treatment options.   
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 Leishmaniasis is transmitted by the bite of an infected female sand fly, which 

tend to feed during dusk (19).  Old World disease is primarily transmitted by the 

Phlebotomus species of sand fly, while New World disease is transmitted by the 

Lutzomyia species.  Leishmania parasites have two distinct morphologies; the 

infective form is the elongated, flagellated promastigote, which is injected into the 

mammalian host by the sand fly.   Promastigotes enter host cells, specifically 

macrophages and dendritic cells, via receptor-mediated phagocytosis thus 

establishing infection within intracellular parasitophorous vacuoles. Once inside cells 

the parasite then becomes a rounded, non-flagellated amastigote which survives 

and multiplies within parasitophorous vacuoles and eventually leads to cell lysis and 

local spread of parasites. Some forms of Leishmania can also become disseminated 

via lymphatic and/or hematogenous spread, thus causing systemic infection.  The 

lifecycle is completed when the sand fly takes a blood meal from an infected host, 

ingesting host cells containing amastigotes.  Amastigotes travel to the midgut of the 

insect where they become promastigotes and multiply (Figure 1). 

 

Pathophysiology of Leishmaniasis 

Leishmaniasis is a disease that affects both humans and other mammalian 

species; dogs and rodents being the primary reservoirs for human disease in 

endemic regions (21).  There are 21 classified species of Leishmania that can cause 

disease.  Infection with the parasite can lead to four main categories of disease; 

cutaneous leishmaniasis, diffuse cutaneous leishmaniasis, mucocutaneous 

leishmaniasis and visceral leishmaniasis (19, 65).  Cutaneous leishmaniasis (CL) is 
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the most common form of the disease and in the Old World is commonly caused by 

L. major and L. tropica (19, 65).  In the New World the primary species that cause 

CL include L. mexicana, L. braziliensis and L. panamensis (19).  There are 1.5 

million new cases of CL annually worldwide (65).  CL manifests as focal to multifocal 

skin lesions that can occur at the site of the infected sand fly bite (105).  Lesions 

develop 1-12 weeks after infection and typically consist of one or more painless 

cutaneous ulcers at the site of inoculation characterized by a necrotic center with 

raised margins covered by a crusty exudate.  These lesions may heal, but 

lymphangitis and secondary bacterial infections also occur (40).  CL caused by 

Leishmania (L.) major infection presents as localized cutaneous lesions and disease 

distribution includes the Middle East, Africa, and central Asia.  Infection with L. 

amazonensis, another species of the parasite responsible for CL, occurs in South 

America.  The majority of diffuse cutaneous leishmaniasis (DCL), characterized by 

chains of chronic cutaneous lesions along lymphatic vessels, are caused by L. 

amazonensis (46).  Although incidence of DCL is rare even in countries where 

Leishmania is endemic, these lesions rarely heal and cause significant scaring and 

disfigurement (19). Diagnosis of CL is often made upon appearance of typical skin 

lesions and history of exposure to the vector in endemic regions.  More definitive 

diagnostic techniques include demonstration of the parasite via impression smears, 

biopsy or culture, as well as polymerase chain reaction (PCR), and serology (40). 

Mucocutaneous leishmaniasis (MCL) is a form of CL that is often caused by 

L. braziliensis, L. panamensis and less commonly by L. amazonensis (53).  MCL is 

characterized by CL-like lesions which involve the nasal mucosa, lips, mouth, 
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pharynx and/or larynx.  These lesions often lead to significant scaring, disfiguring of 

the face and rarely ever heal (53).  In fact, MCL leads to progressive destruction of 

not only the oronasopharyngeal mucosa, but also the underlying cartilage and can 

involve the upper airway leading to respiratory obstruction and secondary infections 

(19). 

Visceral leishmaniasis (VL; also known as Kala azar) is typically caused by L. 

donovani in India, Asia and Africa, L. infantum in the Mediterranean and L. chagasi 

in South America (59).  There are an estimated 500,000 new cases and 50,000 

deaths per year due to VL (59).  Parasite-infected macrophages disseminate in VL 

both hematogenously and via lymphatics, infiltrating the bone marrow, liver, spleen 

and lymph nodes.  This dissemination leads to the classical manifestations of 

disease which include weight loss, hepatosplenomegaly, lymphadenomegaly and 

eventually massive hemorrhage and edema (59).  Patients with VL can also have a 

dermal manifestation of disease called post Kala-azar dermal leishmaniasis.  This 

form is most commonly associated with L. donovani infection and can present years 

after VL remission (19).  Although VL is not considered to be a problem for the 

human population in the United States, incidence of canine visceral leishmaniasis is 

increasing within the foxhound population (31, 84).  

In the case of CL, most immunocompetent hosts will spontaneously resolve 

their lesions over time, although some untreated lesions can lead to significant 

disfiguring scars and social consequences (19).  In contrast, treatment is required for 

MCL, DCL and VL as progression of disease can become life-threatening.  Common 

treatment options to date include pentavalent antimony (PA) compounds, including 
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sodium stibogluconate and meglumine antimoniate (19, 65).  PA is often effective 

but there are many side effects with treatment, including myalgia, joint stiffness, 

cardiac arrhythmias, hepatotoxicity, nephrotoxicity and hemolytic anemia (19).  PA 

treatment is considered a more cost-effective option, but resistance to PA has been 

described in 15% of patients (19).  Pentamidine, Miltefosin and Amphotericin B are 

alternatives to PA and often used when PA fails, although these treatments are 

considerably more expensive and all have significant side effects (19).  Topical 

treatments can be utilized for CL, including cryotherapy and photodynamic therapy 

but cost is often prohibitory in endemic regions.  Combination therapies are used to 

enhance efficacy and decrease side effects during Leishmania treatment (59).  

Resistance to treatment along with variable toxic side effects and expense remain 

important barriers to treatment.   

 

Genetic susceptibility to Leishmania infection 

 Several studies have suggested a familial and/or ethnic susceptibility to 

leishmaniasis in humans residing in endemic regions of the world (8, 12, 44), 

suggesting that there could be genetic susceptibility to disease.  Researchers have 

explored this possibility by examining specific genes or gene products that confer 

disease susceptibility in humans, such as HLA class II polymorphisms (62), 

decreased nitric oxide production (32), and IL-6 cytokine production (13). Dogs in 

endemic areas have also been studied, and genetic susceptibilities and resistance 

mechanisms have been discovered.  One group found that two important mutations 

were found in the NRAMP-1 (SLC11a) gene in susceptible dogs (4).   A different 
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group determined that the Ibizian hound was more resistant to Leishmania infection 

and that this breed can mount a significant cellular immune response to infection as 

compared to more susceptible breeds (96).  It has also been suggested that the 

Foxhound breed of dogs may also have a genetic susceptibility to visceral 

leishmaniasis here in the United States (22).   

 

Murine Cutaneous Leishmaniasis 

Immune response to L. major versus L. amazonensis 

 The murine model of infection has been successfully used to characterize the 

immune response of both susceptible and resistant strains of mice during L. major 

infection.  The majority of inbred mouse strains, such as C3H/He, CBA, C57Bl/6 and 

129Sv/Ev, are considered resistant to infection and develop local cutaneous lesions 

that spontaneously resolve over time.  The healing phenotype associated with L. 

major infection is characterized by a polarized CD4+ Th1 immune response which 

activates infected macrophages to kill intracellular pathogens (94).  Dendritic cells 

from resistant mouse strains that are infected with L. major produce interleukin (IL)-

12 which induces L. major-specific CD4+ Th1 to produce interferon (IFN)-γ.  IFN-γ 

will in turn promote IL-12 production and activate inducible nitric oxide synthase in 

macrophages to produce nitric oxide (NO) (35).  NO is a reactive nitrogen 

intermediate that is toxic to L. major and leads to destruction of the parasite within 

the infected macrophage (56).  In contrast, there are a few murine strains, such as 

BALB/c mice, that develop progressively large, non-healing lesions and are 

considered susceptible (35, 56).   BALB/c mice develop a polarized Th2 immune 
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response with high levels of IL-4, which is an immune response associated with 

susceptibility to disease.   

 Infection of resistant strains of mice with L. amazonensis does not produce 

either a polarized Th1 or Th2 immune response and CD4+ T cells have been shown 

to disparately promote disease progression and pathology (97).  The severity and 

chronicity of disease caused by L. amazonensis is linked to a poor T cell response 

induced by the parasite (1, 91).  Our laboratory has shown that during chronic L. 

amazonensis infection there is decreased production of antigen-specific IFN-γ in the 

draining lymph node, even after induction of a Th1 response early in infection with 

IL-12 treatment (103).  It has been shown that CD4+ T cells isolated from L. 

amazonensis-infected C3H mice are unable to transition to effector T cells (91).  A 

separate group found that when macrophages were treated with IFN-γ, L. 

amazonensis amastigotes had enhanced replication, indicating a classically 

described CD4+ Th1 response may not be sufficient (87).  These data indicate that 

L. amazonensis-infected mice fail to produce a Th1 polarized effector immune 

response, and suggests that additional immune responses are necessary for healing 

this infection.  

 

L. amazonensis and cross protection with L. major infection 

 Our laboratory and others have shown that L. major infection in a C3H murine 

model provides protection against subsequent L. amazonensis infection (102, 104).  

Healing of L. amazonensis following L. major infection is characterized by a 4-6 log 

decrease in parasite burden as well as resolution of infected footpad lesions.  
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Significant increases in IFN-γ and IL-12 production have been observed when 

draining lymph node (DLN) cells from co-infected mice are re-stimulated with L. 

major antigen (102).  This suggests that resolution of lesions is correlated with a 

polarized Th1 response (102).  Similar to the cross-protection observed in C3H 

mice, C57Bl/6 (B6) mice first infected with L. major and subsequently challenged 

with L. amazonensis either have small lesions (unpublished observation) or heal the 

infection (33).  These findings indicate that L. major infection is able to drive an 

effective Th1 immune response and aid in healing L. amazonensis infection.  Our 

laboratory has developed a co-infection system in which C3H mice are infected with 

both L. major and L. amazonensis in the same footpad at the same time.  This co-

infection results in lesion resolution and a very low parasite load by 10-12 weeks 

post-infection (30). In contrast, B6 mice do not heal this co-infection and have much 

higher parasite burdens (30, 33).   

 

C3HeB/FeJ (C3H) versus C57BL/6 (B6) mice and IgG2c antibody production 

 The B6 inbred mouse strain is the most commonly used strain of mouse for 

immunologic studies.  Many genetically altered mice are bred on a B6 background.  

B6 mice, as well as C57BL/10, SJL and NOD mice, carry the Igh1-b allele which 

encodes a portion of the mouse immunoglobulin heavy chain constant region (Igh-C) 

and produces the antibody isotype IgG2c.  In contrast, C3H mice carry the Igh1-a 

allele and produce IgG2a (60, 68).  Immune complexes, or antigen-antibody 

complexes, have been shown to be associated with visceral leishmaniasis in 

humans and dogs, and analysis of IgG subclasses have shown that all classes of 
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IgG are markedly increased with clinical disease (5, 29).  A study in dogs determined 

that levels of IgG2 were higher in dogs that were PCR positive for parasites than 

those that were negative (88).  A separate study found that dogs naturally infected 

with Leishmania infantum had higher IgG2 reactivity than those experimentally 

infected (51).  These findings suggest specific antibody isotypes are important in 

Leishmania infection, but little is known about the function of these antibodies.  

Interestingly, it has been shown that B cells, the cell type that produces antibodies, 

in combination with CD4+ T helper cells are required to kill L. amazonensis in 

infected macrophages in vitro (71).  The role of B cells in this system appears to be 

production of antigen-specific antibodies, and more specifically, antigen-specific 

IgG2a (30). 

 

B cells and Leishmaniasis 

Importance of B cells for resolution of Leishmania infection 

 Although B cells and the production of protective antibodies are classically 

considered to be part of a productive Th2 immune response, some reports in the 

literature do indicate a protective role for B cells and antibodies during Leishmania 

infection.  Scott et. al. showed that blocking B cell production in neonatal C3H mice 

with an anti-mu antibody impaired T cell-mediated immune responses following L. 

major infection (95).  More recently, B cell production of antibody has been shown to 

be important for phagocytosis of L. major by dendritic cells.  Without antibodies, 

infected mice had larger lesion size, higher parasite load, lower IFN-γ production, 

and a decreased T cell response (109).  Other studies have demonstrated the 
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importance of B cells, but have shown that antibody production actually worsens 

Leishmania infection. Miles, et. al. demonstrated that IgG-negative BALB/c mice 

infected with L. major had smaller lesions with fewer parasites compared to infected 

mice that had IgG (64).  A more recent study showed L. amazonensis-infected mice 

that lacked functional B cells, and therefore antibodies, had delayed onset of 

disease and developed smaller lesions (106).  It has also been described that there 

were limited infections with both L. amazonensis and L. pifanoi in the absence of 

circulating antibodies, and infection of Fc gamma receptor (Fc γR)  knockout mice 

resulted in similarly limited lesions (49). FcγR are present on the surface of 

phagocytic cells and function to bind the Fc portion of antibodies leading to receptor-

mediated uptake of opsonized antigens.  When Fc γRIII knockout mice were infected 

with L. mexicana they did not develop lesions.  These mice instead produced a high 

level of IFN- γ, indicating there is a negative effect when antibodies bind Fc γRIII 

during L. mexicana infection (100).   

B cells produce many pro-inflammatory and anti-inflammatory cytokines which 

modulate the immune response.  Both IL-1 and IL-6 are produced by B cells (86).  

IL-1 functions in induction of fever and macrophage activation.  IL-6 will also produce 

fever, along with acute phase proteins and stimulate T and B cell growth and 

differentiation (45).  B cells are reported to produce IL-12 when cultured in a Th1 

environment (37).  We have shown that B cells produce antigen-specific IL-12 during 

chronic L. major infection, but not during L. amazonensis infection (manuscript in 

preparation).  B cells also produce anti-inflammatory cytokines (66) such as IL-10, a 

potent suppressor of macrophage functions (25, 79) and TGF-β, another anti-
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inflammatory cytokine (81).  These findings indicate B cells are not only important for 

antibody production, but also play a role in both cytokine production and polarization 

of a Th1 immune response.  There is evidence that CD4+ T cells are necessary but 

alone are not sufficient for resolution of L. amazonensis infection, and that both 

CD4+ T cells and B cells are necessary and sufficient for healing (71).  The role of 

both cell types during L. amazonensis infection is likely to jointly activate infected 

macrophages to kill intracellular parasites. 

 

B cell development and activation 

 B cell development in the bone marrow follows sequential rearrangement and 

expression of heavy and light-chain immunoglobulin (Ig) genes.  Cells that 

successfully rearrange these genes become immature B cells and express IgM on 

their surface.  Prior to leaving the bone marrow, immature B cells undergo negative 

selection and receptor editing to eliminate self-reactivity.  Immature B cells then 

migrate to the spleen where they complete maturation and become IgM+, IgD+ B 

cells.  Mature B cells seed peripheral lymphoid organs, such as spleen and lymph 

nodes, where they reside primarily in lymphoid follicles (112). Upon antigen 

encounter, B cells become activated following cognate interactions with armed 

helper T cells or undergo T cell-independent activation.  T cell-independent 

activation of B cells occurs when the B cell becomes activated via cross-linking of 

IgM by certain antigens which trigger IgM synthesis, but neither isotype switching 

nor memory cell formation occurs (57).  T cell-dependent activation begins when 

there is recognition of specific antigen via the B cell receptor, antigen is internalized, 
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processed and presented to T helper (Th) cells in the context of major 

histocompatibility complex (MHC) class II molecules (18).  The recognition of 

peptide:MHC class II complexes by Th cells leads to upregulation of CD154 (CD40 

ligand) on the Th cells and engagement of CD40 on B cells.  The combination of 

antigen-receptor binding and CD154-CD40 interactions on B cells will lead to their 

activation (52). Early after activation, B cells proliferate and differentiate into short 

term antibody producing cells, most of which secrete IgM.  Other activated B cells 

will serve as germinal center founder cells and initiate the germinal center reaction 

within follicles.  

 

The germinal center 

 The germinal center is a site of extensive B cell expansion, isotype switching 

(a genetic deletion mechanism that allows switching from IgM to downstream IgG, 

IgA or IgE classes), affinity maturation (mediated by both somatic hypermutation and 

affinity based selection) and memory B cell formation (99).  Germinal centers form 

within lymphoid follicles of the secondary lymphoid organs, including the spleen, 

lymph nodes, Peyer’s patches and other species-specific lymphoid tissues.  Upon 

stimulation by T cell-dependent antigens, activated B cells can do one of two things:  

(1) move into extrafollicular zones, proliferate and become short-lived plasma cells, 

or (2) form B cell follicles in which a small number of cells form germinal centers (3).  

Short-lived plasma cells do not undergo isotype switching or affinity maturation and 

thus, the germinal center is necessary for production of high affinity, antigen-specific 

antibodies.  Mature germinal centers are present within 3-4 days following antigen 
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exposure and have a specific structure (75, 78).  They are organized into the dark 

zone, containing large proliferating B cells which have a very high rate of point 

mutations during cell division, also known as somatic hypermutation (78).  These B 

cells will then enter the light zone, which is composed of smaller, tightly packed B 

cells along with follicular dendritic cells and T follicular helper cells (75) (Figure 2).  

Follicular dendritic cells (fDC) extend long cytoplasmic processes and display 

immune complexes to B cells.  If the newly mutated B cells do not recognize antigen 

displayed by fDCs they undergo apoptosis; but if they do, they are positively 

selected and exit the germinal center to become plasma cells or memory B cells 

(78). fDC’s also produce B cell trophic factors and the chemokine CXCL13 which is 

crucial in organization of the lymphoid follicle (2).  T follicular helper (Tfh) cells are 

also present in the light zone of the germinal center and directly interact with 

germinal center B cells.  Tfh cells are activated T helper cells (CD4+ CD25-) which 

express an inducible co-stimulator (ICOS), a B cell co-stimulatory molecule, 

programmed death recptor-1 (PD-1), a negative co-stimulatory molecule and the 

chemokine receptor CXCR5.  CXCR5 is also expressed on germinal center B cells 

and binds CXCL13 produced by fDC.  This chemokine-receptor pairing is necessary 

for organization of the germinal center light zone (3).  Tfh cells also produce the 

cytokine IL-21 which has been shown to function in B cell proliferation and 

production of plasma cells (38).  The receptor for IL-21 is present on B cells, T cells 

and NK cells.  B cells deficient in the IL-21 receptor have an impaired ability to 

undergo isotype switching and cannot maintain germinal center organization (24).  

Tfh cells can also produce IL-10, IL-2, IFN-γ, and IL-4 (38, 61).  Tfh cells are 
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required for maintenance of germinal centers, B cell affinity maturation and 

production of high affinity antibodies, but not for the formation of the germinal center 

itself (24, 75).  Without Tfh cells, germinal centers do initially form, but rapidly 

undergo regression (75). 

 A primary role for the germinal center is to produce B cells committed to 

antibody production. These are typically isotype switched, high affinity B cells that 

leave the germinal center and differentiate into long lived plasma cells (LLPC). LLPC 

typically migrate to the bone marrow where they secrete antibody for extended 

periods of time (10).  Within the germinal center, differentiation into either LLPC or 

memory B cells (MBC) is determined by the balance of transcription factors within 

the cell.  Expression of B-lymphocyte-induced maturation protein-1 (Blimp-1) and X-

box binding protein 1 (XBP-1) will drive plasma cell differentiation (47).  In the bone 

marrow, LLPC require expression of Blimp-1, XBP-1 and interferon regulatory factor 

4 (IFR4) for continued survival (47).  MBC development is favored by expression of 

the paired box protein 5 (PAX5) transcription factor.  The presence of PAX5 inhibits 

plasma cell differentiation and its continued expression is necessary for B cell 

identity (77).  The microophthalmia-associated transcription factor (MITF) also 

prevents plasma cell differentiation and favors MBC production (47). 

 In addition to T-helper cell dependent activation, B cells can also be activated 

by a number of toll-like receptor (TLR) agonists. In the mouse, these include TLR2 

(lipopeptides), TLR4 (LPS), TLR7/8 (ssRNA) and TLR9 (CpG DNA) ligands. By 

themselves, TLR agonists can induce activation, proliferation and some 

differentiation into IgM secreting cells. TLR ligands can also synergize with other 
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signals (e.g. antigen-receptor binding, CD40 engagement) to further enhance the 

activation state of B cells or lead to apoptosis (41). 

 

Identification of mature B cell subsets by surface marker expression 

 All mature B cells in the mouse express B220 and CD19 surface markers. 

The majority of mature B cells in the peripheral lymphoid organs belong to the 

follicular B cell subset and can be identified by their IgMintermediateIgDhighCD23high 

phenotype.  Upon activation, mature B cells increase surface IgM and progressively 

lose IgD and CD23. Activated B cells also transiently express CD69 and further 

upregulate MHC class II, CD80 and CD86 (52). The latter are co-stimulation 

molecules that foster cognate interactions with Th cells.  Upon entering the germinal 

center, B cells will display peanut agglutinin (PNA) lectin and upregulate CD95 (90).  

Plasma cells typically lose most B cell-specific markers (B220 and CD19 surface 

immunoglobulin) but can be identified by CD138 or Syndecan 1 (90).  MBC retain B 

cell markers and in the mouse and can be identified by the expression of CD19, 

CD38 and the downstream immunoglobulin isotypes (IgG, IgA, or IgE) as well as 

lack of expression of the early activation marker CD23 and IgM (77). 

 

Macrophages  

Macrophage development and phagocytosis 

 Macrophages are derived from myeloid cells in the bone marrow and when in 

circulation are considered monocytes.  They are resident tissue phagocytic cells that 

have a role in normal tissue homeostasis and inflammation (28).  Macrophages 
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function to clear apoptotic cellular debris, produce growth factors during 

homeostasis and have a broad range of pathogen-recognition receptors for 

clearance of foreign particles (28).   

 

Receptor-mediated phagocytosis 

 Phagocytosis by macrophages is triggered by the interaction of foreign 

material with specific phagocytic pathogen-recognition receptors displayed by the 

cell surface.  There are three major pathogen-recognition receptors displayed by the 

macrophage; complement receptors, mannose receptors and Fc receptors (82).  

Complement receptors recognize C3b and C3bi fragments which are generated by 

cleavage of C3 following recognition of pathogen surface components.  Macrophage 

complement receptors include complement receptor (CR)1 (CD35), CR3 

(CD11b/CD18) and CR4 (CD11c/CD18).  CR1 primarily plays a role in binding 

foreign particles while CR3 and 4 function in internalization of particles (82).  

Phagocytosis via complement receptors occurs early in the immune response.  

Mannose receptors recognize mannose and fucose saccharides present on the 

capsule of certain bacteria and other pathogens.  Fc receptors recognize the Fc 

portion of immunoglobulin (Ig) and function to recognize and internalize opsonized 

particles (82).  Other receptors on the macrophage also function in particle uptake, 

including scavenger receptors and lectin-like receptors.   

 

Receptor-mediated phagocytosis of Leishmania 
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Following inoculation, Leishmania promastigotes are phagocytosed by 

mammalian macrophages and dermal dendritic cells located at the site of the sand 

fly bite. Leishmania parasites have been demonstrated to be taken up into 

macrophages via multiple receptor-mediated mechanisms.  L. donovani (15), L. 

amazonensis (89) and L. mexicana (83) all can use mannose receptors for entry into 

macrophages.  The parasite can also utilize complement receptors for receptor-

mediated cell entry.  Binding of CR3 by both L. major and L. amazonensis has been 

described, although a major role for these receptors in macrophage infection has not 

been determined (69) (70). Antibody-opsonized Leishmania has also been shown to 

bind Fc receptors to stimulate receptor update and infection of macrophages (36, 

50) (83).  Macrophages express Fc gamma receptors (FcγR) on their surface that 

bind the Fc portion of antibodies; specifically IgG antibodies.  After FcγR binds 

antibody, macrophages can either become activated via downstream signaling by 

immunoreceptor tyrosine-based activation motifs (ITAMs) or can be inhibited by 

immunoreceptor tyrosine-based inhibitory motifs (ITIMs).  FcγRI and FcγRIII both 

contain ITAMs, while FcγRIIb contains an ITIM (43).  Woelbing et. al. demonstrated 

that FcγR-deficient mice infected with L. major had increased disease susceptibility 

due to a lack of FcγRI and FcγRIII expression on dendritic cells (109).  FcγR-

deficient B6 mice resolve infection with L. mexicana (a species closely related to L. 

amazonensis) and wild type mice exhibit chronic disease (9).  Yang et. al. showed 

FcγR-activated ERK signaling leads to IL-10 production, and subsequently 

exacerbated L. amazonensis infection (110).  These studies emphasize antibody 

binding, Fc receptor uptake and signaling is important in Leishmania infection.   
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Formation of the phagolysosome 

 At the site of receptor-recognition of pathogens the macrophage undergoes 

actin assembly via the Rho family of GTPases, including Cdc42 and Rac1, which 

control actin assembly via proteins of the Wiskot-Aldrich Syndrome protein (WASP) 

family.  WASP interacts with Arp2/3 forming a multifunctional actin organizer when 

both CR and Fc receptors are ligand-bound (82).  Polymerization of actin filaments is 

required for protrusion of pseudopodia and formation of the phagocytic cup.  Cell 

membrane lipid products are also necessary for phagocytosis, including 

phosphatidylinositol-3 kinase (PI3K) and phosphatidylinositol-3,4,5-triphosphate 

(PI(3,4,5)P); both of which trigger extension of pseudopods and closure of the 

phagocytic cup (82).  Once foreign particles are phagocytosed they are contained 

within a membrane-bound endosomal compartment; the phagosome.  Early 

endosomal compartments are distinguished by the presence of Rab5, a small 

GTPase (34).  As the endosome matures it fuses with cytoplasmic lyosomes which 

contain acid hydrolases to lower the pH of the endosome and function to degrade 

internalized material (58).  Late endosomes display Rab7 and the lysosomal–

associated membrane protein-1 (LAMP 1) (34).  These membrane-bound 

compartments function to contain and degrade foreign material as well as regulate 

protein sorting, trafficking, recycling of receptors and other molecules and cell 

signaling (34). 
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Leishmania and the parasitophorous vacuole 

 The parasitophorous vacuole (PV) is a parasite-containing late endosomal 

compartment within phagocytic cells (17).  Depending on the species of parasite, the 

PV can be small and harbor only one parasite, as is the case for L. major and L. 

donovani, or it can be large and communal, for example, during L. amazonensis, L. 

mexicana and L. pifanoi infection (17, 48).    PVs contain host membrane 

components including membrane proteins and phospholipids (39).  PVs contain 

lysosomal enzymes, display late endosomal markers such as Rab7 and LAMP 1 and 

are formed when parasite-containing phagosomes fuse with late 

endosomes/lysosomes (17).  Formation of PVs often occurs within 30 minutes, 

following infection with either metacyclic promastigotes or amastigotes in most 

species, although infection with L. amazonensis promastigotes can take longer due 

to the formation of huge communal PVs (7).  The ultrastructure of the PV during L. 

major infection revealed that a single amastigote is present within a small, tightly 

membrane-bound vacuole (14).  In contrast, multiple L. amazonensis amastigotes 

are present within a single, large membrane-bound PV and attachment of the 

amastigote membrane is limited to a small portion of the PV membrane (14).   

 

Macrophage killing mechanisms: 

Respiratory burst 

During and immediately following macrophage phagocytosis the respiratory burst is 

triggered.  This event is marked by an increase in superoxide generated within the 

phagocytic cup and newly formed phagosome.  This burst is primarily activated 
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through Fc receptor-ligand binding at the macrophage surface (82).  Superoxide is 

produced by the NADPH oxidase enzyme complex composed of 5 subunits which 

are either membrane bound or cytosolic.  P22phox and gp91phox (together called 

cytochrome b558) are the two membrane-bound components present on 

cytoplasmic vesicles that fuse with the plasma membrane during phagocytosis (82).  

The three cytosolic components include p40phox, p47phox and p67phox and are present 

as a complex within resting cells (76).  Two Ras-related small GTP-binding proteins 

are also required; Rap 1 and Rac1, which function to regulate the NADPH complex 

assembly (82).  At the time of phagocytosis p47phox becomes phosphorlyated by 

protein kinases and GTP binds to Rac1.  This phosphorylation causes trafficking of 

the three cytosolic subunits to the membrane where they associate with cytochrome 

b558 and thus create assembled NADPH oxidase (82) (Figure 3).  The p47phox 

subunit plays a key role in this activation, as it is the phosphorylated subunit, while 

p67phox appears to be the subunit that is needed to link cytosolic subunits to 

membrane-bound components (76).  The role of p40phox during superoxide 

generation and complex assembly is controversial.  Recently it has been described 

that the p40phox subunit primarily functions to regulate Fc gamma receptor-induced 

NADPH oxidase activity, not assembly of the complex.   This subunit stimulates 

superoxide production via a phosphatidylinositol-3-phosphate (PI3P) signal following 

phagocytosis and thus is a key subunit in generation of superoxide via FcγR 

activation (101).  FcγR activation will activate class I PI3 kinases, generating 

phosphatidylinositol 3,4,5 triphosphate (PI(3,4,5)P) and phosphatidylinositol 4,5 

bisphosphate (IP(3,4)P) on the phagosome cup and class III PI3K, which will 
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produce PI3P on internalized phagosomes (111).  PI3P will bind p40phox and 

stimulate oxidase activity, which has been described in both neutrophils and 

macrophages (23, 101).  Interestingly, a recent study showed that superoxide, along 

with nitric oxide, was necessary within L. amazonensis-infected macrophages to kill 

the parasite (72). 

 

Nitric Oxide  

 Nitric oxide (NO) is produced by classically-activated macrophages and 

functions to kill intracellular pathogens.  Inducible nitric oxide synthase (iNOS) is the 

catalyst that generates NO and is one of three isoforms of nitric oxide synthase 

which generates nitric oxide from L-arginine (42).  iNOS is primarily expressed in 

macrophages and neutrophils.  Following production of NO, which interacts with 

water and oxygen, there is generation of multiple reactive nitrogen intermediates, 

including NO2
-, NO3

-, N2O2 and peroxynitrite (42).  These reactive intermediates are 

directly toxic to intracellular pathogens, including Mycobacterium and Leishmania 

major (42, 54).  NO functions to kill pathogens via multiple mechanisms including S-

nitrosylation of proteins, tyrosine nitration, deprivation of iron, inhibition of DNA 

synthesis, DNA oxidation, DNA degradation, and oxidation of lipids (reviewed in 

(20).   iNOS is activated by multiple pathogen-derived ligands, including 

lipopolysaccharide (LPS) and mycobacterial lipoarabinomannins (42).  iNOS is also 

strongly activated by Th1 cytokines, specifically IFN-γ.  IFN-γ binds its receptor and 

rapidly activates the Janus tyrosine protein kinases (JAK)-STAT signaling pathway 

(16).  JAK1/2 is activated by tyrosine phosphorylation and allows release of STAT1 
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so it can form a homodimer, translocate to the nucleus and bind IFN-γ-activated 

sequence elements, including IFN response elements (16) (Figure 4).  It has been 

demonstrated that IFN response elements flank the murine iNOS gene and 

transcriptional induction of iNOS by IFN-γ depends on JAK-STAT activation (16). 

 

Leishmania evasion of macrophage killing mechanisms 

Leishmania species resist multiple macrophage killing mechanisms once 

phagocytosed.  Lipophosphoglycan (LPG), a parasite surface glycolipid has been 

shown to inhibit macrophage-produced reactive oxygen species during L. major 

infection (98).  LPG from Leishmania donovani was also shown to block NADPH 

oxidase assembly at the membrane of the phagolysosome (55).  L. donovani has 

been shown to inhibit protein kinase C (PKC) activity; a signaling cascade necessary 

for NADPH oxidase assembly and superoxide production (48).  Opsonized L. 

amazonensis entry into cells is Rac-1 independent (67), and Rac-1 activation is 

required for assembly of the NADPH oxidase complex.  Therefore L. amazonensis 

likely avoids induction of superoxide during Fcγ receptor-mediated phagocytosis 

(67).  Although Fcγ receptor-mediated phagocytosis has been shown to induce 

superoxide production, complement receptor-mediated uptake utilizes a distinctly 

different signaling mechanism, Rho, instead of Rac therefore NADPH oxidase 

assembly does not occur (11).  This means that parasites taken up via complement 

receptors likely do not trigger production of superoxide.  The NADPH oxidase 

complex did not form on PVs during L. pifanoi amastigote infection, but it did form 

when there was infection with L. pifanoi promastigotes (85).  In this case it appeared 
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that there was an unstable association of gp91phox and p22phox (48).  Finally, some 

species of Leishmania, including L. chagasi, L. tropica and L. donovani have been 

shown to produce superoxide dismutase, an enzyme that neutralizes superoxide into 

water and oxygen (63, 73, 80).  Leishmania infection can also inhibit NO production 

via immunomodulation.  L. amazonensis can induce secretion of IL-10 and TGF-β 

which will inhibit the induction of iNOS and production of nitric oxide (107).  Several 

studies have also proven that Leishmania can inhibit IFN-γ-activation of JAK1 and 2 

and Stat 1 signaling, thus inhibiting iNOS activation (6, 26, 74).  Leishmania can 

inhibit production of IL-12 from infected macrophages, thus dampening the activation 

of a productive Th1 immune response (reviewed in (48)).  A productive immune 

response can also be hampered by some species of Leishmania infection by 

causing internalization and subsequent degradation of MHC class II proteins needed 

for antigen presentation and initiation of a robust, productive T cell response 

(reviewed in (7)).  All of these mechanisms provide for parasite evasion of the 

macrophage killing response and intracellular persistence.   

 

Overview of thesis and project objectives 

 The objectives of this dissertation were to (1) determine whether phenotypic 

differences in specific cell type(s) leads C3H mice to heal a co-infection with L. major 

and L. amazonensis while B6 do not, (2) determine the phenotypic and/or functional 

difference between B cells from co-infected C3H mice and co-infected B6 mice, (3) 

to determine the signaling pathways triggered in L. amazonensis-infected 

macrophages that can lead to generation of both superoxide and nitric oxide. These 
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findings significantly advance our knowledge concerning the importance of B cells in 

the cell-mediated anti-Leishmania immune response, provide a better understanding 

for murine strain differences in response to Leishmania co-infection and allow us to 

discover how to promote a productive immune response against L. amazonensis. 

 The findings presented here will not only help us understand the role of B 

cells in chronic Leishmania infection, but also will allow us to gain insight into the 

specific immune factors needed for healing of L. amazonensis infection in vivo.  

These studies will assist in determining what is necessary for protective vaccination 

and treatment of this disease.  By identifying immunologic differences between two 

different mouse strains, we hope to be able to apply these findings to the 

understanding of genetic susceptibility to disease in other animals, specifically dogs, 

as well as humans.  Identification of the roles of both CD4+ T cells and B cells in the 

role of macrophage activation and killing of L. amazonensis will also aid in our 

understanding of a productive immune response.  Defining the pathways of 

macrophage activation by both of these cell types will allow us to determine what 

factor(s) are necessary to resolve chronic infections with L. amazonensis.  Overall, 

these findings will aid us in identifying factors necessary for resolution of L. 

amazonensis infection and why different mouse strains respond differently to 

infection.  These concepts can then be applied to determining how people respond 

to Leishmania infection, as well as other persistent infections.   
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Figure 1. Life cycle of Leishmania major infection.  Leishmania parasites are 
transmitted by the bites of infected female sand flies, which inject a small number of 
infectious-stage, metacyclic promastigotes into the skin. These forms are opsonized 
efficiently by serum components and taken up by macrophages, where they reside 
in phagolysosomes and transform into replicating amastigotes. Infected 
macrophages are taken up by sand flies during blood feeding; they are lysed in the 
fly midgut, releasing parasites that transform into rapidly dividing, non-infectious-
stage promastigotes. These forms undergo a process of attachment to the midgut 
wall, release and anterior migration that is accompanied by their differentiation to 
non-dividing, metacyclic promastigotes that can be transmitted when the sand fly 
takes another blood meal.  Figure and legend reprinted by permission from 
Macmillian Publishers Ltd:  Nature Reviews Immunology, Sacks, D and N. Noben-
Trauth. 2(11): 845-58, copyright 2002. 
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Figure 2.  Organization of the germinal center.  Antigen-activated B cells 
differentiate into centroblasts that undergo clonal expansion in the dark zone of the 
germinal centre. During proliferation, the process of somatic hypermutation (SHM) 
introduces base-pair changes into the V(D)J region of the rearranged genes 
encoding the immunoglobulin variable region (IgV) of the heavy chain and light 
chain; some of these base-pair mutations lead to a change in the amino-acid 
sequence. Centroblasts then differentiate into centrocytes and move to the light 
zone, where the modified antigen receptor, with help from immune helper cells 
including T cells and follicular dendritic cells (FDCs), is selected for improved binding 
to the immunizing antigen. Newly generated centrocytes that produce an 
unfavourable antibody undergo apoptosis and are removed. A subset of centrocytes 
undergoes immunoglobulin class-switch recombination (CSR). Cycling of 
centroblasts and centrocytes between dark and light zones seems to be mediated by 
a chemokine gradient, presumably established by stromal cells in the respective 
zones (not shown). Antigen-selected centrocytes eventually differentiate into 
memory B cells or plasma cells.  Figure and legend reprinted by permission from 
Macmillian Publishers Ltd:  Nature Reviews Immunology, Klein, Ulf and Riccardo 
Dalla-Favera.  8: 22-33, copyright 2008 
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Figure 3. Activation of reactive oxygen species (ROS) generation by assembly 
of Phox regulatory proteins in phagocytes. Activation of the gp91phox system 
occurs by at least three signalling triggers that result in the assembly of cytosolic 
regulatory proteins (p40phox, p47phox and p67phox) with flavocytochrome b558 
(comprised of the membrane-associated catalytic subunit gp91phox plus p22phox). 
These triggers involve protein kinases, lipid-metabolizing enzymes and nucleotide-
exchange proteins that activate the GTPase RAC. Protein kinases, including protein 
kinase C and AKT, catalyse many phosphorylations of the autoinhibitory region 
(AIR) of p47phox, releasing its binding to the bis-SRC-homology 3 (SH3) domain, 
allowing p47phox to bind to p22phox. This also relieves inhibition of the Phox 
homology (PX) domain of p47phox, allowing binding to lipids. Because p47phox also 
binds to p67phox, it has been described as an organizer protein. 
Phosphatidylinositol 3-kinase (PI3K) and phospholipase D produce 3-
phosphorylated phosphatidylintositols (PtdInsP) and phosphatidic acid, respectively, 
providing lipids to which the p47phox and p40phox PX domains bind. RAC is post-
translationally modified with a carboxy-terminal hydrophobic geranyl-geranyl group. 
In RAC-GDP, this group is masked by the inhibitory protein RhoGDP-dissociation 
inhibitor (RhoGDI), maintaining RAC in the cytosol. Activation of exchange factor(s) 
triggers GTP binding, resulting in conformational changes in RAC that promote 
dissociation from RhoGDI and membrane association through the geranyl-geranyl 
lipid. The conformational change also promotes RAC binding to the tricodecapeptide 
(TPR) region of p67phox, helping to assemble the active complex.Figure and legend 
reprinted by permission from Macmillian Publishers Ltd:  Nature Reviews 
Immunology, Lambeth, J. David.  4; 181-189, copyright 2004. 
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Figure 4. Cytokine-dependent and metabolic regulatory circuits that affect the 
inducible enzymes arginase 1 and nitric-oxide synthase 2. The T helper 1 (TH1) 
cytokine interferon-  (IFN- ) and the TH2 cytokines interleukin-4 (IL-4) and IL-13 are 
the main inducers of nitric-oxide synthase 2 (NOS2) and arginase 1 (ARG1), 
respectively. Pro-inflammatory signals (such as IL-1, tumour-necrosis factor (TNF), 
IFN-γ  and IFN-γ) and anti-inflammatory signals (such as IL-10, transforming growth 
factor-  (TGF-β), cyclic AMP and dexamethasone) can contribute to regulate the final 
balance between NOS2 and ARG1 activity. Moreover, ARG1 and NOS2 directly 
activate several biochemical circuits that negatively regulate each other. Low 
extracellular L-arginine concentration, overexpression of ARG1 or reduction of the 
capacity for L-arginine uptake can all decrease intracellular L-arginine levels (L-
arginine) and halt the translation of mRNA encoding NOS2, thereby reducing the 
activity of NOS2. Molecules and products of L-arginine metabolism function in the 
cytosol but can also be released extracellularly. Nitric oxide (NO), NG-hydroxy-L-
arginine (NOHA), L-ornithine, polyamines (including putrescine, spermidine and 
spermine), NG-monomethyl-L-arginine monoacetate and even ARG1 itself can be 
found in the extracellular space. ONOO-, peroxynitrite; STAT, signal transducer and 
activator of transcription. Figure and legend reprinted by permission from Macmillian 
Publishers Ltd:  Nature Reviews Immunology, Bronte, Vincenzo and Paola 
Zanovello.  5; 641-654, copyright 2005. 
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Abstract 

Infection of C3HeB/FeJ and C57BL/6 mice with Leishmania major 

stimulates a healing cell-mediated immune response, while Leishmania 

amazonensis infection leads to chronic disease.  Here we show C3HeB/FeJ mice 

co-infected with both species of Leishmania heal, while co-infected C57BL/6 mice 

do not. Using an in vitro killing assay we determined B cells from infected 

C57BL/6 mice are ineffective in promoting parasite killing compared to B cells 

from infected C3HeB/FeJ mice.  Furthermore, infected C57BL/6 mice produce 

less antigen-specific antibodies as compared to infected C3HeB/FeJ mice.  

These findings suggest B cells play a required role in the cell-mediated immune 

response against L. amazonensis. 
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Introduction 

Leishmaniasis is a zoonotic, vector-borne disease caused by an obligate 

intracellular protozoan parasite of the genus Leishmania.  Infection of C3HeB/FeJ 

(C3H) mice with Leishmania amazonensis (La) leads to chronic disease with 

large non-resolving cutaneous lesions and high parasite loads (7). The La-

induced immune response is neither a T helper 1 (TH1) or a T helper 2 (TH2) 

response, as evidenced by unpolarized CD4+ T cells that fail to efficiently 

produce either IFN-γ or IL-4 and by dendritic cells that produce little IL-12 (1, 5, 6, 

14).  Experimental evidence derived using Leishmania major (Lm) indicates that 

protection from these parasites requires establishment of a polarized TH1 immune 

response characterized by production of IL-12 and subsequent activation of IFN-

 γ -producing CD4+ T cells (15). More recent studies demonstrated that La-

specific TH1 CD4+ T cells were ineffective in killing La in vivo and did not promote 

lesion resolution (13, 18).  However, our laboratory and others have shown that 

TH1 immunity associated with Lm infection provided significant protection against 

subsequent La infection (2, 17, 19). 

Similar to the cross-protection observed in C3H mice, C57BL/6 (B6) mice 

first infected with 1 x 104 Lm and subsequently challenged with La also heal the 

infection, but interestingly, these mice do not heal a simultaneous infection with 

both Lm and La (2).  To better understand the cellular mechanism underlying the 

productive healing response provided during co-infection of C3H mice and not B6 

mice, we performed a simultaneous co-infection with Lm and La in both the C3H 

and B6 mouse models.   
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Materials and Methods 

Parasites.  La (MHOM/BR/0016/LTB) and Lm (MHOM/IL/80/Friedlin) 

promastigotes were grown in complete Grace’s Insect medium (Atlanta 

Biologicals, Lawrenceville, GA) to stationary phase, harvested, washed in 

endotoxin-free PBS (Cellgro, Herdon, VA) and diluted to a concentration of 1 x 

108 parasites per milliliter.   

Mice.  Female C3HeB/FeJ mice (6-8 weeks of age) were bred in-house in 

a specific pathogen-free environment.  The Institutional Animal Care and Use 

Committee at Iowa State University approved all protocols involving animals.  

Female C57BL/6 mice of the same age were obtained from Jackson Laboratories 

(Bar Harbor, Maine).   

In vivo co-infection.  Mice with a single infection were inoculated with 5 x 

106 La or Lm stationary phase promastigotes, while co-infected mice were 

inoculated with 2.5 x 106 stationary phase Lm promastigotes plus 2.5 x 106 La 

promastigotes, totaling 5 x 106 parasites in the left hind footpad.  Mice were 

infected for 12 weeks with weekly monitoring of lesion size.  At 12 weeks p.i. the 

mice were euthanized and parasite quantification in the infected footpad was 

performed using limiting dilution.   

In vitro killing assay.  Bone marrow-derived macrophages were derived from 

naïve C3H and B6 mice as described previously (12).  Briefly, after 6 days in 

culture BMDM were harvested, counted, and 5 x 105 macrophages were added 

into the bottom compartment of 24 well transwell plates (Corning Costar, NY), 

each containing a coverslip (Fisher Scientific, Hanover Park, IL) in complete 

tissue culture media (CTCM).  Macrophages were infected with La amastigotes at 

a 3:1 parasite to macrophage ratio.  Popliteal lymph nodes were harvested from 
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C3H or B6 mice infected for 4 weeks with Lm.  CD4+ T cells (Miltenyi Biotech, 

Auburn, CA) or CD19+ B cells (MagCellect, R&D system, Minneapolis, MN) were 

purified via depletion using an autoMACSTM separator (Miltenyi Biotech, Auburn, 

CA).  The CD4+ T cells and B cells were added to the top compartment of 0.4 μm 

diameter transwell along with freeze-thawed Lm promastigote antigen, as 

indicated in Figure 2.  When allogeneic B cells were assessed they were placed 

separately into the upper chamber and the syngeneic CD4+ T cells and 

macrophages were placed together in the bottom chamber, necessitating the use 

of BMDM from both C3H (Figure 2A) or B6 (Figure 2B) mice.  All experimental 

conditions were performed in duplicate.  Coverslips were harvested after 5 days 

of culture, fixed with 100% methanol and stained with the HEMA 3 stain set 

(Fisher Scientific, Hanover Park, IL).  Data analysis was performed by counting 

the coverslips via light microscopy and examining three areas at 100x 

magnification.  In each area, 100 macrophages were examined assessing the 

number of infected macrophages and the number of parasites per 100 infected 

macrophages.   

 Statistical Procedure.  Statistical analysis was performed using Statview 

(SAS, Cary, NC).  When treatment groups were compared, the data was 

analyzed with ANOVA and Scheffe pair-wise comparisons.  When two treatment 

groups were compared, data was analyzed using an unpaired student’s t-test.  

Differences were considered significant when P < 0.05. 
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Results 

Simultaneous co-infection with both Leishmania major (Lm) and 

Leishmania amazonensis (La) allows for lesion resolution in C3H but not B6 

mice.   

After co-infection with La and Lm, C3H mice had negligible footpad lesions by 

12 weeks p.i., similar to infection with Lm alone (Figure 1A).  Parasite load from 

infected footpads was between 102 and 103 parasites (Figure 1C).  In contrast, 

co-infected B6 mice developed large footpad lesions that persisted for the 12 

week period (Figure 1B) and parasite burdens were 106 to 107 parasites per 

footpad, similar to infection with La alone (Figure 1C).  Therefore, co-infection 

with Lm leads to decreased footpad lesion size during concurrent La infection in 

C3H mice, but not in B6 mice.   

 

B cells isolated from L. major-infected C57Bl/6 mice do not promote killing 

of L. amazonensis in vitro. 

To better understand the underlying cellular mechanism of the difference 

observed after co-infection of C3H versus B6 mice, we employed an in vitro 

assay developed in our laboratory (12) to assess which immune cell-types, 

derived from the draining lymph node (DLN) of Lm-infected C3H mice, are 

required to deplete La infection.  This assay utilizes bone marrow-derived 

macrophages (BMDM) from C3H mice infected with La amastigotes for 24h in 

vitro.  These infected macrophages are then co-cultured with DLN cells harvested 

from C3H mice that had been infected with Lm for 4 weeks, the point at which 

footpad lesions are resolving.  Our previous studies determined that although 

antigen-specific CD4+ T cells are required, they are not sufficient to promote 
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macrophage killing of intracellular La.  Antigen-specific CD19+ B cells and their 

antibodies were found to be additional necessary components for macrophage 

killing of intracellular La amastigotes in this assay (12).  

Using transwell chambers we showed that direct contact between infected 

macrophages and the lymphocytes was not required for the observed parasite 

depletion, allowing experiments with syngeneic cells.  However, although B cells 

could be isolated to the upper chamber, CD4+ T cell function required cell contact 

with either the macrophage in the lower chamber or the B cell in the upper 

chamber. This fact precludes the ability to test syngeneic macrophages and B 

cells with allogeneic CD4+ T cells without the confounding influence of a mixed 

lymphocyte response.  Based on these findings and the fact that co-infected B6 

mice do not heal (Figure 1B), we hypothesized that CD4+ T cells and B cells from 

the DLN of Lm-infected B6 mice would not be able to induce macrophages to kill 

La in our in vitro co-culture assay.  

Figure 2 shows CD4+ T cells and B cells isolated from Lm-infected B6 mice 

do not reduce the percentage of infected macrophages in vitro when compared to 

the same cells isolated from Lm-infected C3H mice. This phenomenon is not 

affected by the mouse strain from which the macrophages are derived (Figure 

2A, first and second bars; Figure 2B, first and third bars). Furthermore, B cells 

from C3H mice promoted killing of La even in combination with CD4+ T cells from 

B6 mice (Figure 2B, second bar). In contrast, B cells from B6 mice did not 

promote killing even with CD4+ T cells isolated from C3H mice (Figure 2A, third 

bar).  These results demonstrate that the inability of B6 mice to control the co-

infection tracks with an inability of B6 B cells to aid in the killing of La in our in 
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vitro killing assay system.  Thus B cells from Lm-infected B6 mice are not 

functionally equivalent to those from Lm-infected C3H mice.  

 

C57Bl/6 mice produce low levels of Leishmania major-specific antibodies in 

vivo. 

Based on the conclusion that B cells from C3H and B6 mice did not 

demonstrate equivalent responses in vitro, we wanted to determine if there were 

differences in their B cell responses in vivo. Therefore we compared parasite-

specific total IgG and IgG2a or IgG2c (10) antibody production during infection of 

C3H or B6 mice, respectively. ELISA was performed on serum for antibody 

isotype titers.  All samples from both C3H and B6 mice were positive for total IgG, 

IgG2a or IgG2c, at 1:10,000 dilutions at 5 and 12 weeks post-infection, indicating 

readily detectable serum antibodies.  Western blot analysis was performed with 

serum (1:25 dilution) from mice infected for 5 or 12 weeks hybridized against 

freeze-thawed La and Lm stationary phase promastigote parasite antigen. C3H 

mice infected with Lm alone or co-infected produced readily demonstrable 

parasite-specific total IgG and the TH1-associated IgG2a isotype to both La and 

Lm antigens (Figure 3a, b) at both 5 and 12 weeks p.i.  No parasite specific 

IgG2a was detected after La infection at 5 weeks with a small amount seen at 12 

weeks post-infection (Figure 3b). In contrast, B6 mice produced only small 

amounts of parasite-specific total IgG (Figure 3a) and almost undetectable 

amounts of the TH1 associated IgG2c isotype, which was Lm-specific even after 

co-infection (Figure 3b).  These results were recapitulated using amastigote-

derived antigen preparations for western blot analysis (data not shown).  
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Discussion 

Our results support the premise that B cells play a necessary role in an 

effective TH1-mediated immune response towards La and that the inability of B6 

mice to heal a co-infection correlates with a defect in the B cell response, rather 

than an exclusive defect in the CD4+ T cell response.  Although B cells and the 

production of protective antibodies are classically considered part of a productive 

TH2 immune response, several reports indicate a protective role for B cells and/or 

antibodies during Leishmania infection. Recently, B cell production of antibodies 

has been shown to be important for phagocytosis of Lm by dendritic cells.  

Without antibodies, Lm-infected mice had larger lesion sizes, higher parasite 

loads, low IFN-γ production, and a decreased T cell response, indicating 

antibodies supported resolution of the infection (21).  In contrast, other studies 

have indicated the importance of B cells in enhancing immunopathology during 

Leishmania infection. Miles et al. showed that in the absence of IgG, Lm-infected 

BALB/c mice had smaller lesions with fewer parasites as compared to infected 

wild-type mice (11). Recently, another study using mice that lack functional B 

cells and antibodies, showed La-infected mice had a delayed onset of disease 

and developed small lesions (20).  Kima et. al. also described limited infections 

with both L. amazonensis and L. pifanoi in the absence of circulating antibodies, 

and infection of Fc gamma receptor (Fc γR)  knockout mice resulted in similarly 

limited lesions (9).  In addition, work by Thomas and Buxbaum showed Fc γRIII 

knockout mice were resistant to L. mexicana infection.  These mice healed their 

lesions with a high level of IFN- γ production, indicating antibody stimulation of 

Fc γRIII was detrimental during L. mexicana infection (16).   
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Our results are not in disagreement with these studies.  Our previous and 

current work suggests that any effective immune response against La, in addition 

to other factors, must include a productive antigen-specific B cell response that 

can promote macrophage-mediated parasite killing. Following inoculation, 

Leishmania promastigotes are phagocytosed by mammalian macrophages and 

dendritic cells located at the site of infection.  Macrophages express Fc γR on 

their surface that bind the Fc portion of antibodies; specifically IgG antibodies.  

After Fc γR-antibody binding, macrophages can become activated to produce 

effector molecules including NADPH-oxidase dependent superoxide production 

via immunoreceptor tyrosine-based activation motifs (ITAMs) (4).  A recent study 

demonstrated that superoxide generation was a required factor in killing La in 

human cases of chronic disease (8). In the C3H mouse model, our laboratory has 

shown that B cells and IgG antibodies along with CD4+ T cells from an 

established Lm infection are necessary for providing effective stimulation to 

macrophages for superoxide dependent killing of La (12). Neutralization of IgG2a 

in vitro negates killing of La within infected macrophages (Supplemental data). 

However, replacement of C3H B cells with serum from Lm-infected C3H mice is 

not sufficient for killing of La in vitro (unpublished observations).   

Our results indicate B6 mice produce detectable but low levels of Lm 

parasite-specific total IgG and IgG2c antibodies during infection, as compared to 

total IgG and parasite-specific IgG2a produced by C3H mice.  This overall low 

level of parasite-specific IgG2c antibody production may result in inadequate 

stimulation of Fc γ receptors, limiting superoxide production. Overall, our findings 

indicate that antibodies are necessary, but not sufficient, for killing La and that 

antibodies are just one of several critical immune components required for killing.  
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The known complexities of antigen-antibody and FcγR-mediated immustimulatory 

vs. immunoregulatory mechanisms (reviewed in (3)) suggests that simple serum 

or B cell transfer experiments may not adequately recapitulate all of the immune 

components required for killing La either in vivo or in vitro, consistent with our 

own unpublished observations.  

In conclusion, the inability of B6 mice to heal a co-infection of Lm and La 

correlates with a defect in the B cell response, rather than the CD4+ T cell 

response, as defined by our in vitro killing assay. These results suggest that both 

effective CD4+ T cells and B cells are required for a protective, healing, cell-

mediated immune response to La.  
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Figure 1. Simultaneous co-infection with both Leishmania major (Lm) and 
Leishmania amazonensis (La) allows for lesion resolution in C3H but not B6 
mice.  A. Lesion size of co-infected C3H mice was significantly different from 
C3H mice infected with La alone (grey diamonds) (p < 0.001), while B. co-
infected B6 mice were significantly different from the B6 mice infected with Lm 
alone (open squares) (p < 0.001). Lesion size was determined by measuring the 
infected footpad and comparing that to the non-infected footpad.  Repeated 
measure ANOVA was used for statistical analysis.  Results are representative of 
three separate experiments.  C. The number of parasites in the lesions of co-
infected C3H and B6 mice.  Infected footpads were harvested and parasite 
suspensions were serially diluted in Complete Grace’s medium and incubated at 
27°C for 5 to 7 days. Different symbols (*, #) represent a statistically significant 
difference (p < 0.001) within the C3H infection groups and different letters (a, b) 
represent significant differences (p < 0.001) within the B6 infection groups. 
ANOVA and Scheffe pair-wise comparisons using Stat View software were used 
for statistical analysis.  Results are the mean and SE from three separate 
experiments.  
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Figure 2. B cells isolated from Leishmania major (Lm)-infected C57BL/6 (B6) 
mice do not promote killing of Leishmania amazonensis (La) in vitro.  A. 
CD19+ B cells and CD4+ T cells, purified from the draining lymph node (DLN) of 
C3H or B6 mice infected with Lm for 4 weeks, were placed into the upper 
chamber of a transwell plate with La-infected C3H-bone marrow-derived 
macrophages (BMDM) in the lower chamber as indicated above (1st and 2nd bars, 
respectively). B cells from B6 mice were isolated to the upper chamber and CD4+ 
T cells from C3H mice were placed in the bottom chamber (3rd bar).  All wells 
contained Lm freeze-thawed antigen and were incubated for 5 days at 34°C.  
 Black shading indicates the presence of B cells from B6 mice.  B.  Same as A 
except with BMDM derived from B6 mice and B cells from C3H mice were 
isolated to the upper chamber (2nd bar) as indicated.  Black shading indicates the 
presence of B cells from C3H mice.  * represent statistically significant 
differences (p < 0.001) as determined by ANOVA and Scheffe pair-wise 
comparison.  Results are the mean and SE from three separate experiments. 
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Figure 3.  Western blot analysis of parasite-specific production of total IgG 
and IgG isotypes IgG2a and IgG2c. Freeze-thawed Leishmania amazonensis 
(a) or Leishmania major (m) antigen was separated on a polyacrylamide gel and 
protein was transferred to a polyvinylidene fluoride (PVDF) membrane.  The blots 
were subsequently hybridized with mouse serum (1:25 dilution) pooled from four 
C3H mice (upper panel) or B6 mice (lower panel) that were non-infected (N) or 
infected for 5 or 12 weeks with Lm, La, or both parasites (Co), as indicated.  
Following serum hybridization, the membranes were probed with goat anti-mouse 
antibodies to (A) total IgG or with goat anti-mouse antibodies to (B) IgG2a (C3H, 
upper panels) or IgG2c (lower panels). * identifies lanes with commercial 
molecular weight markers that cross-reacted with serum antibodies. Results are 
from one experiment at 5 weeks p.i. and representative of two experiments at 12 
weeks p.i. 
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Supplemental Figure.  IgG2a antibodies are necessary in vitro to kill La in 
infected macrophages.  Draining lymph node (DLN) cells from C3H mice 
infected with either La or Lm for 4 weeks were added to bone marrow-derived 
macrophages from C3H mice infected with La amastigotes on coverslips with Lm 
freeze-thawed antigen and incubated for 5 days at 34°C.   Polystyrene beads 
were incubated with 12.5 μg/ml of either goat anti-mouse IgG2a or isotype control 
antibody, followed by 2 washing steps with PBS and a final concentration of 15 x 
106 beads were added per well, as designated.  * represent statistically significant 
differences (p < 0.05) as determined by unpaired student’s t-test. Results are 
from 2 separate experiments. 
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Chapter 3 

 CO-INFECTION WITH LEISHMANIA MAJOR AND LEISHMANIA AMAZONENSIS 
PROMOTES A FUNCTIONAL B CELL GERMINAL CENTER RESPONSE IN 

C3HeB/FeJ MICE BUT NOT C57Bl/6 MICE  
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Abstract 

 Co-infection of C3HeB/FeJ mice with both Leishmania major and Leishmania 

amazonensis leads to a healed footpad lesion, while co-infection of C57Bl/6 mice 

leads to chronic, non-healing lesions.  This lack of healing corresponds to a B cell 

deficiency in stimulation of macrophage-mediated killing of L. amazonensis in vitro.  

Despite this knowledge, the mechanism behind the inability of C57Bl/6 mice to heal 

L. amazonensis is not known.  Here we describe for the first time a difference in the 

draining lymph node germinal center B cell response between co-infected C3H and 

B6 mice.  There are more germinal center B cells, more antibody isotype-switched 

germinal center B cells, more memory B cells and more antigen-specific antibody-

producing cells in co-infected C3H mice compared to B6 mice as early as 2 weeks 

post-infection.  We also show that IL-21 production in both mouse strains is similar 

at 2 weeks, suggesting the difference in these mouse strains is due to intrinsic B cell 

differences, rather than a difference in IL-21 production within germinal centers. 
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Introduction 

 Leishmaniasis is a vector-borne disease caused by an obligate intracellular 

protozoan parasite of the genus Leishmania.  Both Leishmania (L.) major and L. 

amazonensis cause cutaneous leishmaniasis, characterized by focal to multifocal 

cutaneous ulcerations which occur following infection by a sand fly bite.  Infection of 

C3HeB/FeJ (C3H) mice with L. major results in self-cure within 8-12 weeks, 

dependent upon development of a polarized CD4+T helper 1 (Th1) immune 

response.  A Th1 response is critical for activation of macrophages to kill internalized 

parasites.  Infection of the same mouse model with L. amazonensis leads to large, 

non-healing lesions and the immune response is not polarized to either a Th1 or Th2 

response (2, 18), which is thought to lead to the lack of healing and disease 

progression (20, 23).   

 Prior infection of C3H mice with L. major leads to protection against 

subsequent L. amazonensis infection (26, 27).  More recently it has been described 

that co-infection with both L. major and L. amazonensis in the same footpad  

leads to a healed lesion in C3H mice (7, 8).  Compared to C3H mice, co-infected B6 

mice have larger lesion sizes and a significantly higher lesion parasite load (7).  

Using an in vitro model of Leishmania infection developed in our laboratory we have 

identified that both CD4+ T cells and CD19+ B cells from L. major-infected C3H mice 

were necessary to kill L. amazonensis within infected macrophages (16).  When 

CD4+ T cells and CD19+ B cells from B6 mice were utilized in this assay, killing was 

not observed (7).  Using cell depletion studies it was determined that B cells from L. 

major-infected B6 mice do not have the same ability to activate infected 
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macrophages to kill L. amazonensis as B cells from C3H mice in this in vitro assay 

(7).  It was also demonstrated that co-infected B6 mice are unable to make high 

levels of Leishmania-antigen specific antibodies as compared to co-infected C3H 

mice (7).  In combination, these findings indicate the key role of B cells T-cell-

mediated immune responses against L. amazonensis. 

 In this study we characterized the B cell response in both C3H and B6 mice 

co-infected with L. major and L. amazonensis.  Here we describe novel differences 

in C3H and B6 B cell responses during Leishmania co-infection, specifically, 

increased germinal center B cell numbers, increased numbers of germinal center B 

cells that are isotype switched, increased memory B cells and increased antigen-

specific antibody-producing cells in C3H mice as early as 2 weeks post-infection as 

compared to B6 mice.  We also demonstrate that IL-21 production is not responsible 

for theses differences in B cell function, as both strains of mice have similar levels of 

IL-21-producing cells post-infection.  Taken together our findings provide evidence 

that an adequate germinal center response is required to control a co-infection with 

L. major and L. amazonensis. 

 

Materials and Methods 

Mice.  Female C57BL/6 (B6) and female C3HeB/FeJ (C3H) mice (6-8 weeks 

of age) were either obtained from Jackson Laboratories (Bar Harbor, Maine) or from 

an in-house breeding colony.  Mice were maintained in a specific pathogen-free 

facility.  Mice were infected with either 5 x 106 stationary-phase L. major, L. 

amazonensis or 2.5 x 106 L. major and 2.5 x 106 L. amazonensis promastigotes in 
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50µl of PBS in the left hind footpad.  All procedures involving animals were approved 

by the Institutional Animal Care and Use Committee at Iowa State University. 

Parasites and antigens.  L.amazonensis (MHOM/BR/00/LTB0016) and L. 

major (MHOM/IL/80/Friedlin) promastigotes were grown in complete Grace’s Insect 

medium (Atlanta Biologicals, Lawrenceville, GA) to stationary phase, harvested, 

washed in endotoxin-free PBS (Cellgro, Herdon, VA) and prepared to a 

concentration of 1 x 108 parasites per milliliter.  Freeze-thawed Leishmania antigen 

(Ag) was obtained from stationary-phase promastigotes as previously described 

(10). 

 Lymph node cell culture and sorting.  Total lymph node (TLN) cells were 

obtained from the left popliteal lymph node draining the site of infection from C3H 

and B6 mice infected for 2 or 5 weeks with L. major, L. amazonensis, or co-infected 

with both species.  Lymph nodes from each mouse were kept separate and 

harvested into 2 ml of complete tissue culture medium (CTCM; RPMI 1640, 2mM L-

glutamine, 100 U penicillin, 100µg streptomycin/ml, 25 mM HEPES, 0.05 µm 2-

mercaptoethanol and 10% FBS).  A single cell suspension was created using a 2 ml 

tissue homogenizer.  Cells were passed through a 40µm nylon cell strainer (BD 

Falcon, Bedford, MA) and washed with 10 ml of CTCM at 250 x g, 4°C for 10 

minutes.  Following washing, cells were resuspended in 0.5 ml CTCM and counted.   

  Flow cytometry.  For analysis of surface molecule expression, 0.5 x 106 total 

TLN cells were washed in 2 ml of fluorescence-activated cell sorting buffer (FACS, 

0.1% sodium azide and 0.1% bovine serum albumin in phosphate buffer saline).  

Fcγ receptors were blocked with 10% purified rat anti-mouse CD16/CD32 antibody 
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(BD pharmigen, San Diego, CA) in 1mg/ml rat IgG (Sigma, St. Louis, MO) for 20 

minutes at 4°C to prevent nonspecific binding.  TLN cells were then incubated with 

appropriate primary antibody or isotype control for 30 minutes on ice.  The 

antibodies used include phycoerythrin-labeled CD19(1D3), Cy5-labeled CD19 (1D3), 

biotin-labeled CD69, biotin-labeled IgM (b7-6), biotin-labeled IgD (11-26), biotin-

labeled MHC class II (M5114 for B6 or I-Ak for C3H), fluorescein isothiocyanate-

labeled CD86 (GL1), biotin-labeled CD40, fluorescein isothiocyanate-labeled PNA, 

phycoerythrin-labeled CD23 (B2B4), Cy5-labeled B220 (6B2) and biotin-labeled 

CD95.  CD69, CD95 and MHC class II (I-Ak) were purchased from eBiosciences 

(San Diego, CA), PE-CD19 was purchased from BD pharmigen (San Diego, CA) 

and the remainder of antibodies were a gift and used as previously described (22).  

Following incubation, cells were washed twice in 2 ml of FACS buffer and then 

incubated with appropriate secondary antibody, if necessary, for 30 minutes at 4°C.  

Secondary antibodies included phycoerythrin-labeled streptavadin (as previously 

described (22)) and fluorescein isothiocyanate-labeled streptavadin (BD pharmigen 

(San Diego, CA)).  After secondary antibody incubation, cells were washed twice in 

2 ml FACS buffer, fixed in 200µl of 1% paraformaldehyde and stored at 4°C in the 

dark until analysis.  Analysis was performed on a BD FACScanto flow cytometer 

(Becton Dickinson, San Jose, CA) and data analysis was performed using FlowJo 

software V8.5.2 (Tree Star, Inc., Ashland, OR). 

 Antigen-specific ELIspots.  IgG1, IgG2a and IgG2c ELIspots were performed 

on TLN cells.  Immulon 2 plates (Fischer, Fair Lawn, NJ) were coated with 5µg/ml of 

freeze-thawed Leishmania parasite antigen overnight at 4°C.  Following washing 
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with PBS, commercially available biotinylated anti-IgG1, IgG2a and IgG2c antibodies 

(Jackson ImmunoResearch West Grove, PA) were added at a 1:10,000 dilution in 

5% fetal bovine serum overnight at 4°C.  ELIspots were developed using 2-amino-2-

methyl-1-propanol (ICN Biomedicals Inc., Aurora, OH) and 5-bromo-4-chloro-3-

indoly-phosphate (Fisher, Fair Lawn, NJ). 

 IL-21 ELIspots.  A similar procedure was utilized as described above on TLN 

cells using the mouse IL-21 DuoSet kit according to manufacturer’s instructions 

(R&D Systems, Minneapolis, MN. 

 Lymph node histopathology and immunohistochemistry.  Popliteal lymph 

nodes from the left hind leg draining the site of infection were harvested and placed 

in cassettes in 10% neutral buffered formalin for histological and 

immunohistochemical analyses.  Histologic examination was performed on paraffin-

embedded tissues cut at 5 μm thickness onto positively charged slides and stained 

with Hematoxylin and Eosin (H&E).  For immunohistochemistry, slides were 

deparaffinized and blocked with 20% normal rat serum.  The sections were then 

incubated with an anti-mouse B220/CD45R antibody (BD Harlingen, San Diego, CA) 

overnight at a concentration of 1:400 with 10% normal rat serum.  The slides were 

rinsed with PBS and then incubated with biotin-labeled anti-rat IgG (KPL, 

Gaithersburg, MD) at a concentration of 1:300 in 10% normal rat serum.  Slides 

were washed and incubated with peroxidase-conjugated streptavidin (BioGenex, 

San Ramon, CA) for 45 minutes.  After 2 PBS washes, the color was developed with 

Nova Red (KPL, Gaithersburg, MD).  The slides were then counterstained with 

Harris’ hematoxylin, dehydrated and mounted with coverslips.  Lymph nodes were 
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also frozen for immunohistochemical staining using peanut agglutinin (PNA).  Frozen 

sections (OCT) were cut at 5 μm and fixed in cold acetone.  Sections were washed 

once with PBS, blocked for 30 minutes with 10% normal rat serum then stained for 

60 minutes with biotin-labeled PNA (Vector Laboratories, Burlingame, CA).  Slides 

were then incubated with peroxidase-conjugated streptavidin (BioGenex, San 

Ramon, CA) for 45 minutes.  After 2 PBS washes, the color was developed with 

Nova Red.  A semi-quantitative scoring scale for PNA staining was utilized as 

defined by: 0, no PNA staining; 1, 1-2 PNA-positive germinal centers, 2, 3-4 PNA-

positive germinal centers; 3,  5 or more PNA-positive germinal centers; 4, greater 

than 6 PNA-positive germinal centers per lymph node.  All evaluations were made 

based on the average of one lymph node section from 3 animals and two separate 

experiments. 

 Statistical Procedure.  Statistical analysis was performed with Prism4 

(GraphPad Software Inc., La Jolla, CA).  Differences between groups were 

determined using a Mann-Whitney T-test.  P-values < 0.05 were considered 

statistically significant. 

 

Results 

There are fewer germinal center B cells and isotype switched germinal center 

B cells during co-infection of B6 mice than C3H mice. 

 We previously demonstrated that L. major and L. amazonensis co-infection of 

C3H mice heal footpad lesions by 10-12 weeks post-infection.  Co-infected B6 mice, 

in comparison, have persistent non-healing lesions and a higher footpad parasite 
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burden (7).  Using an in vitro co-culture assay, we have shown that B cells harvested 

from L. major-infected B6 mice do not function to kill L. amazonensis in contrast to B 

cells from L. major-infected C3H mice (7).  Based on these previous findings, we 

hypothesized that B cells from co-infected B6 would be phenotypically and 

functionally different from B cells from co-infected C3H mice.  Using draining TLN 

cells from mice infected with L. amazonensis, L. major or co-infected with both 

species for 2 and 5 weeks, we assessed the number of germinal center B cells and 

isotype-switched germinal center B cells via a 3-color flow cytometric analysis.   

 Upon entering the germinal center, B cells typically display the peanut 

agglutinin (PNA) lectin and upregulate CD95 surface expression (17).  There were 

significantly more germinal center positive (B220+, PNA+) B cells in the draining 

lymph nodes of co-infected C3H mice as compared to co-infected B6 mice at both 2 

and 5 weeks post-infection (Figure 1A).  Naïve mice of both strains had negligible 

numbers of germinal center B cells (Figure 1A). 

 The germinal center functions as the primary location for isotype switching of 

activated B cells.  Cells that are PNA+ and IgM- have been shown to be germinal 

center B cells that have undergone isotype switching (5).  To assess the population 

of B cells within this phenotype we assessed the B220+, PNA+ cell populations via 

FACS analysis of cells from the draining lymph nodes of L. amazonensis, L. major 

and co-infected C3H and B6 mice for expression of IgM.  We determined that co-

infected C3H mice have more germinal center B cells that are IgM- and therefore 

have undergone isotype switching at 2 and 5 weeks post-infection (Figure 1B).  

Upon activation, B cells will also up-regulate surface expression of MHC class II, 
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CD80, CD86 and CD40 (13).  To assess B cell activation status, we also used flow 

cytometry to determine surface expression of these markers.  Draining lymph node 

cells were fist gated on the B220+ population and no differences were observed in 

the mean fluorescent intensity (MFI) over naïve of MHC class II (Figure 1C) and 

CD86 (Figure 1D) on B cells during a infection with a single species of the parasite 

or during the co-infection at either 2 or 5 weeks.  Similarly, no differences in CD40 

expression was noted during any of the infection groups at either time point (data not 

shown).  These findings demonstrate that there is no difference in the B cell 

activation status of co-infected B6 and C3H mice following Leishmania infection. 

 To confirm our flow cytometric findings we performed immunohistochemistry 

using anti-B220 (also known as CD45R) and biotin-labeled PNA on draining lymph 

nodes of co-infected mice 2 week post-infection.  The pattern of immunoreactivity for 

B220 demonstrated that lymph nodes from co-infected C3H mice have active 

cortices with multiple, large follicles and distinct germinal center formation, as 

compared to co-infected B6 mice which had less distinct follicles and rare germinal 

centers (Figure 2A, top panels).  PNA staining confirmed there were more germinal 

centers in co-infected C3H mice, and draining lymph nodes of co-infected B6 mice 

had germinal centers that were smaller and fewer in number (Figure 2A, bottom 

panels and B).  Together, these findings indicate that the germinal center B cell 

response at both 2 and 5 weeks post-infection in co-infected B6 mice was less 

robust as characterized by fewer germinal center B cells and fewer germinal center 

B cells that had undergone isotype switching.  It is known that the germinal center is 

the site in which B cells either become memory B cells or antibody-secreting plasma 
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cells (3), therefore these findings may suggest that C3H mice that are co-infected 

with L. major and L. amazonensis may more memory B cells and/or more antibody-

secreting cells. 

 

During co-infection, there are more memory B cells in C3H mice as compared 

to B6 mice. 

 Based on finding more germinal center B cells in co-infected C3H mice than 

B6 mice, we wanted to determine if this difference in the number of germinal center 

B cells would lead to a downstream difference in the memory B cell population 

between these two mouse strains after co-infection.  TLN cells were analyzed via 

flow cytometry with anti-CD19 to identify B cells, anti-IgM and anti-CD23.  Anti-

CD19, instead of anti-B220, was used to eliminate plasmacytoid dendritic cells which 

also express B220.  Non-switched, immature B cells have previously been shown to 

express surface IgM and CD23, while memory B cells are IgM-, CD23- (22).  At both 

2 and 5 weeks after co-infection we found that C3H mice had increased numbers of 

memory B cells as compared to B6 mice (Figure 3).  During single infection with 

either L. major or L. amazonensis, C3H mice also had a larger population of memory 

B cells than B6 mice (Figure 3).  We showed in figures 1 and 2 that germinal center 

formation was augmented in C3H but not B6 mice after co-infection.  Given the 

critical role for germinal center formation in creation of effector B cells, it makes 

sense that both isotype switching and creation of memory B cells is compromised if 

germinal center formation is lackluster, as seen after co-infection of B6 mice. 
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Co-infected C3H mice produce more antigen-specific antibodies than co-

infected B6 mice. 

 In order to determine if the observed differences in germinal center formation 

and B cell effector phenotype lead to differences in B cell antibody production, we 

analyzed the number of antigen-specific antibody-producing B cells during co-

infection of C3H and B6 mice.  ELIspot analysis was performed on draining TLN 

cells for antigen-specific antibody production of IgG2a (C3H), IgG2c (B6) and IgG1 

from draining lymph nodes of co-infected C3H and B6 mice.  B6 mice have 

previously been shown to carry the Igh1-b allele that encodes for and leads to IgG2c 

antibody isotype production, while C3H mice carry the Igh1-a allele and therefore 

produce IgG2a (14), which is why we measured production of these two specific 

antibody isotypes.  C3H mice produce more L. major-specific IgG2a than B6 mice 

produce L. major-specific IgG2c at both 2 and 5 weeks post-infection (Figure 4A).  

Differential production of L. major-specific antibody is associated with a healing 

response against L. amazonensis during the co-infection (7).  No significant 

differences were noted in the production of antigen-specific IgG1 (Figure 4B).  These 

findings indicate there is a differential germinal center B cell response in co-infected 

C3H mice, leading to the production of more antigen-specific antibodies as 

compared to B6 mice. 

 

IL-21 production is similar between C3H and B6 mice co-infected for 2 weeks 

 When B6 mice are co-infected in the footpad with both L. major and L. 

amazonensis they have fewer germinal centers within the draining lymph node 
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which contain fewer B cells, fewer isotype switched germinal center B cells, fewer 

memory B cells and fewer antigen-specific IgG2c antibody-producing cells than co-

infected C3H mice.  We sought to determine if these differences have to do with a 

differential production of interleukin (IL)-21 from the draining lymph node of co-

infected C3H versus B6 mice.  IL-21, produced by T follicular helper (Tfh) cells within 

germinal centers, has been shown to function in B cell proliferation and production of 

plasma cells (9).  B cells express the receptor for IL-21, and B cells deficient in this 

receptor have an impaired ability to undergo isotype switching and cannot maintain 

germinal center organization (6).  We performed IL-21 ELIspots on TLN cells from 

co-infected C3H versus B6 mice and found that there was no difference in the 

number of IL-21 producing cells at 2 weeks post-infection with or without antigen 

stimulation (Figure 5 and data not shown).  A paucity of IL-21 production is unlikely 

to be responsible for the differences we have described in germinal center B cell 

responses after co-infection of B6 mice versus C3H mice. 

 

Discussion 

 It has yet to be determined what immune factors are required to heal 

cutaneous Leishmaniasis caused by L. amazonensis.  Previous work has described 

that footpad co-infection with both L. major and L. amazonensis leads to a healing 

phenotype in C3H mice, while B6 mice develop non-healing, persistent lesions (7, 

8).  We have also determined that, using an in vitro model that mimics the co-

infection, B cells from infected B6 mice do not function as effectively as B cells from 

C3H mice to kill intracellular L. amazonensis (7). Here we describe for the first time a 
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difference in the germinal center B cell response between C3H and B6 mice co-

infected with L. major and L. amazonensis early in infection.  Germinal centers, 

formed within secondary lymphoid organs, are the site for early B cell expansion 

(24).  Following proliferation, signal-dependent isotype switching occurs within the 

germinal center, changing the B cell receptor surface expression from IgD or IgM to 

IgG, IgA or IgE (24).  At 2 and 5 weeks following infection there were more germinal 

center B cells and more isotype switched germinal center B cells in co-infected C3H 

mice compared to B6 mice (Figure 1A and B).  We also demonstrated that there 

were increased germinal centers within the draining lymph nodes of co-infected C3H 

mice compared to co-infected B6 mice at 2 weeks post-infection (Figure 2A and B).  

B cell memory is also formed in germinal centers (3).  Given this additional role for 

germinal centers, it was not surprising that there are more memory B cells at both 2 

and 5 weeks post co-infection in C3H mice compared to B6 mice (Figure 3).  

Immunological memory is required for an accelerated and robust immune response 

to pathogens (11), and this finding suggests that without a good memory B cell 

response co-infection with L. major and L. amazonensis cannot be controlled, as 

indicated by large, non-healing lesions in co-infected B6 mice.   

 The germinal center is an essential site in which there is generation of 

memory B cells and isotype switching which function to produce effector B cells and 

antigen-specific antibody-producing cells (22).  Little has been documented 

regarding the germinal center response during Leishmania infection, as this 

pathogen is considered to classically activate a Th1 polarized immune response.  

Histological studies in mice have reported enlarged or hyperplastic germinal centers 
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with apoptotic cells up to 40 days post-infection with L. amazonensis (1).  More 

recently using L. major infection of BALB/c mice it was determined that Tfh cells in 

the germinal centers produce cytokines that influence the affinity and isotype of the 

antibody response (19).  Our data indicates that there are more antigen-specific 

IgG2a-producing cells in the draining lymph node of co-infected C3H mice as 

compared to antigen-specific IgG2c-producing cells from co-infected B6 mice 

(Figure 4).  These two antibody isotypes are important, as they are the predominant 

antibodies produced during a polarized Th1 immune response (4).  The presence of 

robust germinal center formation in C3H mice versus B6 mice after co-infection and 

the downstream effector function of B cells as measured by isotype switching, 

memory cell formation and production of antigen-specific antibodies all suggest a 

robust germinal center response is required for a productive immune response and 

healing of co-infection with L. major and L. amazonensis. 

 The role of B cells during infection with Leishmania is controversial.  Some 

reports have described a protective role for both B cells and antibodies during 

Leishmania infection.  Scott et. al showed that blocking B cell production of 

antibodies in neonatal mice using an anti-mu antibody impaired the T cell-mediated 

immune response following L. major infection (21).  Antibody production has also 

been shown to be a key factor for phagocytosis of L. major by dendritic cells.  

Without antibody opsonization, infected mice had larger lesion sizes, higher parasite 

loads, lower interferon (IFN)-γ production and a decreased T cell response (29).  

Other studies describe a negative effect of antibody production during Leishmania 

infection.  When IgG-negative BALB/c mice were infected with L. major, smaller 
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lesions with a lower parasite load compared to infected mice with IgG were observed 

(15).  A more recent study showed L. amazonensis-infected mice that lacked 

functional B cells and therefore antibodies, had a delayed onset of disease and 

developed small lesions (28).  It has also been shown that there were limited 

infections with both L. amazonensis and L. pifanoi in the absence of circulating 

antibodies, and infection of Fc gamma receptor (Fc γR)  knockout mice resulted in 

similarly limited lesions (12).  When Fc γRIII knockout mice were infected with L. 

mexicana lesions failed to develop.  Instead, these mice produced high levels of 

IFN- γ, indicating there is a negative effect when antibodies bind Fc γRIII during L. 

mexicana infection (25).  Although there appears to be a discrepancy for the role of 

B cells during Leishmania infection, B cells appear to be playing an important role 

during a co-infection of C3H mice with L. major and L. amazonensis, while no 

positive role for B cells is indicated in co-infected B6 mice. 

 It is known that T cells have a critical role in germinal center formation and 

maintenance.  T follicular helper (Tfh) cells are a T helper cell subset that is 

specialized in regulating the effector and memory responses of B cells (6).  Within 

the germinal center Tfh cells produce the cytokine IL-21 which has been shown to 

promote B cell proliferation and production of plasma cells (9).  B cells express the 

IL-21 receptor and B cells deficient in this receptor have an impaired ability to 

undergo isotype switching and lose germinal center organization (6).  We proposed 

that differential IL-21 production might be responsible for the germinal center 

phenotypic differences we determined between co-infected C3H and B6 mice.  

Despite this, there was no difference in the number of IL-21-producing cells at 2 
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weeks post-infection between these two mouse strains following antigenic 

stimulation (Figure 5).  This determination suggests that Tfh helper cells in both 

mouse strains produce similar amounts of IL-21 so the defects in germinal center 

formation and function in co-infected B6 mice may be due to disparate B cell 

responsiveness, not a Tfh cell defect.  Future studies would look at expression of the 

IL-21 receptor on B6 B cells as compared to C3H B cells during the co-infection, to 

determine if there is differential expression of this receptor which would explain the 

differences we see in germinal center formation and effector B cell responses. 
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Figure 1.  Increased number of both germinal center B cells and germinal 
center B cells undergoing isotype switching in co-infected C3H mice.  C3H 
(black) and B6 (gray) mice were infected with L. amazonensis, L. major, or co-
infected with both species of parasites.  Total draining lymph node cells were 
harvested at 2 and 5 weeks post-infection.  Cells were first gated on the B220+ 
population and analyzed for (A) binding to PNA (B) PNA binding and IgM surface 
expression (C) surface expression of MHC class II and (D) surface expression of 
CD86 as indicated by mean fluorescence intensity (MFI).  Cell number was 
determined based on the percentage of cells within the gated population and the 
total number of lymph node cells recovered.  MFI for each marker presented as fold 
increase over naïve control.  Data are represented as the mean ± SEM of three 
separate experiments; *P ≤ 0.05.  Lm, L. major; La, L. amazonensis; Co, co-infected 
with both L. major and L. amazonensis.   
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Figure 2.  More germinal centers following co-infection of C3H mice with L. 
major and L. amazonensis.  A.  Photomicrographs of lymph node sections labeled 
with anti-mouse B220 (top panels) and biotin-PNA (bottom panels) from C3H and B6 
mice co-infected for 2 weeks.  White dash lines delineate germinal centers.  Bar = 
200µm.  B.  Histologic germinal center scores for PNA immunoreactivity at 2 weeks.  
Score is based on the number of PNA+ germinal centers within a single draining 
lymph node.  Data are representitive of 2 separate experiments ± SEM with 3-4 mice 
per group, per experiment.  *P=0.0087.   
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Figure 3.  Increased number of memory B cells (B220+,IgM-,CD23-) in the 
draining lymph node of co-infected C3H mice.  C3H (black) and B6 (gray) mice 
were infected with L. amazonensis, L. major, or co-infected with both species of 
parasites.  Total draining lymph node cells were harvested at 2 and 5 weeks post-
infection.  Via flow cytometry, cells were gated on a CD19+ population and surface 
expression of both IgM and CD23 was determined based on the percentage of cells 
within the gated population as compared to the total lymph node cells recovered.  
Data are representitive of two separate experiments ± SEM; *P ≤ 0.05.  Lm, L. 
major; La, L. amazonensis; Co, co-infected with both L. major and L. amazonensis.   
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Figure 4.  Increased number of antigen-specific IgG2a-producing cells  
following co-infection in C3H mice as compared to antigen-specific IgG2c-
producing cells in co-infected B6 mice.  C3H (black) and B6 (gray) mice were 
infected with L. amazonensis, L. major, or co-infected with both species of parasites.  
Total draining lymph node cells were harvested at 2 and 5 weeks post-infection 
(please note scales).  Number of (A) IgG2a (C3H) and IgG2c (B6) producing cells 
and (B) IgG1-producing cells as determined by ELIspot analysis of total draining 
lymph node cells stimulated with freeze-thawed Leishmania promastigote antigen, 
as indicated above.  Data are represented as the mean ± SEM of three separate 
experiments; *P ≤ 0.05.  Lm, L. major; La, L. amazonensis; Co, co-infected with both 
L. major and L. amazonensis.   
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Figure 5.  No difference in the number of IL-21 producing cells in draining 
lymph node cells from co-infected C3H and B6 mice.  Number of IL-21-producing 
cells was determined by ELIspot analysis of total draining lymph node cells 
stimulated with freeze-thawed Leishmania promastigote antigen.  Data are 
represented as the mean ± SEM of two (for B6) or three (for C3H) separate 
experiments.  Lm, L. major; La, L. amazonensis; Co, co-infected with both L. major 
and L. amazonensis.   
 

 



www.manaraa.com

 78

Chapter 4 
 

THE FcGAMMA RECEPTOR-NADPH OXIDASE PATHWAY AND ANTIBODY-
ENHANCED INTRACELLULAR KILLING OFLEISHMANIA AMAZONENSIS  

 
A manuscript prepared for submission to the Journal of Immunology 

 
Katherine N. Gibson-Corley 1, 3, Paola M. Boggiatto 1, Bryan Bellaire 2, 4, Christine A. 

Petersen 1, 4, Douglas E. Jones 1, 4 
 

Abstract 

 Leishmania (L.) amazonensis is a causative agent of cutaneous leishmaniasis 

in humans and can lead to severe, disseminated disease.  Mice infected with L. 

amazonensis have a non-polarized T helper cell response and non-healing, chronic 

lesions.  In vitro, a productive response to this pathogen has been recapitulated 

through macrophage production of both nitric oxide and superoxide.  We show FcγR 

and cytochrome b558 are necessary for superoxide production during an 

established infection.  We demonstrate NADPH oxidase assembly of gp91phox and 

p67phox occurs by day 1 during the in vitro infection and is localized directly adjacent 

to the parasite.  However, measurable superoxide production was only detectable at 

day 5 in vitro, indicating that assembly of these subunits was not sufficient to trigger 

superoxide production.  Using wortmannin inhibition of PI3K, we show inhibition of 

superoxide production at day 5 and indicating that PI3K is critical for superoxide 

production at this late stage of infection. These data establish that the FcγR-NADPH 

oxidase activation pathway is required to kill intracellular L. amazonensis.   

We propose that this novel pathway requires L. major antigen-specific B cell  
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2Department of Veterinary Microbiology and Preventative Medicine, Iowa State University 
3Primary researcher and author 
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production of antibodies which bind stimulatory Fcγ receptors to produce superoxide 

through PI3K-mediated activation of assembled NADPH oxidase complexes that are 

associated with intracellular amastigote parasites.  Understanding the role of this 

pathway in controlling non-healing cutaneous leishmaniasis caused by L. 

amazonensis may be critical in determining specific immunomodulation to 

successfully treat this disease. 

 

Introduction 

 Leishmaniasis is a vector-borne zoonotic disease caused by protozoa 

parasites of the genus Leishmania.  Leishmania (L.) major and L. amazonensis both 

cause cutaneous leishmaniasis which is manifested as focal to multifocal skin 

lesions (28).  Lesions caused by L. major are often self-curing while L. amazonensis 

can lead to chronic, disseminated disease (1, 28).  Parasite killing within infected 

macrophages occurs when there is initiation of an appropriate immune response 

which sufficiently activates infected macrophages.  L. major has been shown to 

initiate a strong polarized T helper 1 (Th1) immune response characterized by a 

CD4+ T cell population that produces of interferon gamma (IFN-γ) to classically 

activate macrophages (28).  In contrast L. amazonensis does not produce a 

polarized Th1 immune response.  L. amazonensis antigen-specific CD4+ T cells 

have been shown to allow both disease progression and pathology (1, 27).   

 Macrophages are classically activated by IFN-γ and exposure to microbes or 

microbial-derived products (17, 21).  These macrophages have an increased ability 

to degrade and destroy intracellular organisms due to phagolysosomal production of 
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reactive oxygen species and nitric oxide (NO) (21).  Inducible nitric oxide synthase 

(iNOS) has been shown to catalyze formation of reactive nitrogen intermediates 

including NO and/or other reactive nitrogen molecules (17).  Multiple studies suggest 

that virulence and chronicity of L. amazonensis infection in mouse models may be 

related to parasite resistance of NO-mediated killing (10, 23, 29).  Recently, several 

different human clinical isolates of L. amazonensis and L. braziliensis were 

demonstrated to positively correlate lesion severity and parasite resistance to nitric 

oxide (9). NO may only be cytostatic for L. amazonensis versus cytotoxic as it is for 

L. major.  Cytotoxicity activity against L. amazonensis was shown to be dependent 

on formation of peroxynitrite and/or compounds derived from peroxynitrite (16).    

Reactive nitrogen species may interact with NADPH-oxidase-dependent 

superoxide to produce or enhance the cytotoxic response (reviewed in (3)).  The 

primary mechanism of superoxide generation has been shown to occur during 

phagocytosis through assembly of NADPH oxidase complexes on the phagosomal 

cup and membrane (24).  The NADPH complex is composed of two membrane-

bound subunits, gp91phox and p22phox, which form cytochrome b558 (cytoB), four 

cytosolic subunits, p47phox, p67phox, p40phox and the small GTPase Rac (24).  

Assembly of NADPH oxidase is triggered via binding of complement receptors 

and/or Fcγ receptors (FcγR) on the membrane of the macrophage to complement 

components or the Fc domain of antibodies, respectively (25), (12).  FcγR signaling 

promotes association of NADPH oxidase cytosolic components with cytoB and 

activation of the enzyme produces superoxide.  A recent study demonstrated that 

assembly of NADPH oxidase complexes can occur without superoxide production, 
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and production of superoxide requires both the p40phox subunit and PI3K activation 

in addition to complex assembly (31). 

We have previously demonstrated that macrophage killing of L. amazonensis 

requires both NO and superoxide production (23).  We have also determined both 

CD4+ T cells and B cells are important factors for resolution of L. amazonensis 

infection (22). From the results shown here we suggest the role of CD4+ T cells is to 

activate iNOS production of NO via production of IFN-γ, which binds to the IFN-γ 

receptor (IFN-γR).  We also suggest that the role of B cells is to produce antibodies 

that bind stimulatory Fc gamma receptors (FcγR) to activate NADPH oxidase 

production of superoxide via the PI3K signaling pathway and they can be effective 

after the establishment of the intracellular infection.  We demonstrate that NADPH 

oxidase subunit assembly of gp91phox and p67phox occurs adjacent to the parasite 

and as early as day 1 during in vitro co-culture.  Although we observe assembly of 

these subunits early, measurable superoxide is not produced until day 5 which 

corresponds with when we observe intracellular killing of L. amazonensis.  When the 

PI3K inhibitor wortmannin is added to L. amazonensis-infected macrophages in co-

culture, we do not see production of superoxide, indicating that PI3K signaling is 

critical for production of superoxide in this system.  The requirements for both FcγR 

and cytochrome b558 signals to produce formazan precipitants indicative of 

superoxide production along with a PI3K-dependent signal is a novel mechanism to 

reduce an established intracellular parasitic infection.   
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Materials and Methods 

Mice and infection.  Female C57BL/6 (B6) mice, IFN-γ receptor (IFN-γR-/-), 

inducible nitric oxide synthase (iNOS-/-) and Cytochrome b558 (CytoB-/-) deficient 

mice (all on B6 background) (6-8 weeks of age) were obtained from Jackson 

Laboratories (Bar Harbor, Maine).  Fcγ receptor common chain deficient (FcγR-/-) 

mice on a B6 background were kindly donated by Dr. Mary Ann McDowell at the 

University of Notre Dame.  Mice were maintained in a specific pathogen-free facility.  

Female C3HeB/FeJ (C3H) (6-8 weeks of age) were obtained from an in-house 

breeding colony.  C3H mice were infected with 5 x 106 stationary-phase 

promastigotes in 50µl of PBS in the left hind footpad.  For the propagation of lesion-

derived amastigotes female C3H severe combined immunodeficient (SCID) mice 

were infected with 20 x106 stationary-phase promastigotes in 50µl of PBS in the left 

hind footpad.  All procedures involving animals were approved by the Institutional 

Animal Care and Use Committee at Iowa State University. 

Parasites and antigens.  L.amazonensis (MHOM/BR/00/LTB0016) and L. 

major (MHOM/IL/80/Friedlin) promastigotes were grown in complete Grace’s Insect 

medium (Atlanta Biologicals, Lawrenceville, GA) to stationary phase, harvested, 

washed in endotoxin-free PBS (Cellgro, Herdon, VA) and prepared to a 

concentration of 1 x 108 parasites per milliliter.  Freeze-thawed Leishmania antigen 

(Ag) was obtained from stationary-phase promastigotes as described (13). 

Cells and cell culture.  Bone marrow cells were harvested from femurs and tibias 

of wild-type B6 or previously mentioned null mice and plated in 150 x 15 mm Petri 

dishes with 30ml of macrophage medium (30% L-cell conditioned medium, 20% fetal 



www.manaraa.com

 83

bovine serum (FBS), 50% Dulbecco’s modification of eagle’s medium (DMEM), 2mM 

L-glutamine, 100 U penicillin per ml, 100µg of streptomycin per ml and 1 mM sodium 

pyruvate) for 6 days at 37°C and 5% CO2.  On day 7 the adherent cell population 

was collected and washed with PBS.  Trypan blue exclusion was used to determine 

the number of live cells followed by resuspension of cells in complete tissue culture 

medium (CTCM; DMEM, 2mM L-glutamine, 100 U penicillin, 100µg streptomycin/ml, 

25 mM HEPES, 0.05 um 2-mercaptoethanol and 10% FBS). 

Macrophage infection.   L.major and L. amazonensis amastigotes were collected 

from infected footpads of SCID mice and were used to infect bone marrow-derived 

macrophages (BMM) at 3:1 parasite to cell ratio and incubated at 34°C with 5% CO2 

in 24 well plates seeded with tissue coverslips. After 24 hours, macrophages were 

washed two times in PBS to remove extracellular amastigotes. 

 Lymph node cell culture and sorting.  Total lymph node (TLN) cells were 

obtained from the left popliteal lymph node draining the site of infection from C3H 

mice infected for 4 weeks with L. major.  Lymph nodes from 10-15 mice were pooled 

into 2 ml of CTCM and a single cell suspension was created using a 2 ml tissue 

homogenizer.  Cells were washed with 10 ml of CTCM at 250 x g, 4°C for 10 

minutes.  Following washing, cells were resuspended in 5 ml CTCM, passed through 

a 40µm nylon cell strainer (BD Falcon, Bedford, MA) and counted via trypan blue 

exclusion.  CD4+ T cells (Miltenyi Biotech, Auburn, CA) or CD19+ B cells 

(MagCellect, R&D system, Minneapolis, MN) were purified via depletion using an 

autoMACSTM separator (Miltenyi Biotech, Auburn, CA).  TLN cells or purified CD4+ T 

cells and B cells were added to the top compartment of 0.4 µm diameter transwells 
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with freeze-thawed L. major promastigote antigen.  Following sorting, the cells were 

washed and resuspended in 1 ml CTCM and counted again.  Where indicated, co-

cultures were pre-incubated with 100nM wortmannin (Sigma, St. Louis, MO) at 37°C 

for the time indicated.  Cell purity was assessed using FACS analysis. 

 Determination of macrophage infection rate.  Following incubation for 1 to 5 

days, coverslips were harvested, fixed and stained using nonspecific HEMA 3 stain 

set (Fisher Diagnostics, Middletown, VA).  Coverslips were mounted onto glass 

slides and counted via light microscopy at 100x oil magnification. Three areas of 100 

cells each were counted for parasite infection rate. 

 Determination of nitric oxide and superoxide production.  The concentration of 

nitrite was assessed using Greiss reagent as described previously (18).  Briefly, 50 

µl of cell culture supernatant and 50 µl of Greiss reagent (LabChem, Pittsburgh, PA) 

were mixed and incubated at room temperature and the absorbance was measured 

at 550nm with a microplate reader (Molecular Devices, Sunnyvale, CA).  Nitrite 

concentration was determined using a standard curve generated with sodium nitrite.  

Production of superoxide was assessed using Nitro Blue Tetrazolimide (NBT) 

(Sigma, St. Louis, MO) tablets.  NBT tablets were dissolved in 1ml sterilized 

deionized water and 30 µl of NBT was added to designated wells and incubated for 

60-90 minutes at 37°C, 5% CO2.  Coverslips were harvested, fixed and stained with 

eosin.  Presence of formazan, indicative of superoxide production, was based on 

visualization of basophilic (blue) precipitants within cells using light microscopy as 

follows: 0, no formazan; 1, 1-5 cells with formazan; 2, 6-10 cells with formazan; 3, > 
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10 cells with formazan.  All evaluations were calculated from the mean of 10, 40x 

fields per coverslip, 2 coverslips per experiment and 2-3 separate experiments. 

 Immunofluorescence.  Following infection and co-culture for the designated 

number of days, coverslips were harvested and fixed with 4% paraformaldehyde in 

PBS for 20 minutes at room temperature and washed three times with PBS.  BMM 

were permeabilized with 0.01% Triton X in PBS for 10 minutes at room temperature.  

Cells were incubated overnight at 4°C with goat anti-mouse gp91phox, rabbit anti-

mouse p67phox (Santa Cruz Biotechnology, Santa Cruz, CA) and Alexa Fluor 

CD107A (LAMP1) (eBiosciences, La Jolla, CA) at a 1:50, 1:100 and 1:100 dilution in 

PBS, respectively.  After incubation, coverslips were washed three times with PBS 

and incubated for 1 hour at room temperature with anti-goat Cy3-conjugated 

antibody or anti-rabbit Cy2-conjugated antibody (Jackson ImmunoResearch 

Laboratories, West Grove, PA) at a 1:200 dilution in PBS, if necessary.  BMM were 

then counterstained with 4’6-Diamidino-2-phenindole (DAPI) (Sigma, St. Louis, MO).  

Coverslips were mounted onto slides using MOWIOL (Calbiochem, La Jolla, CA) 

and viewed via sequential scanning confocal microscopy using an Olympus IX81 

inverted microscope (Olympus America Inc., Center Valley, PA).  Pearson’s co-

localization coefficient was determined via Olympus Fluoview version 2.1b software 

and a single coefficient was measured per one field of view. 

 Statistical Procedure.  Statistical analysis was performed with Statview (SAS, 

Cary, NC) using ANOVA, Scheffe’s post-hoc test and linear regression for figures 1 

and 3 and via Prism4 (GraphPad Software Inc., La Jolla, CA) for figures 2, 6 and 
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Table 1.  Differences between groups were determined using a Mann-Whitney T-

test.  P-values < 0.05 were considered statistically significant. 

 

Results 

L. amazonensis-infected macrophages require IFN-γ receptor, iNOS, Fcγ 

receptor common chain and the cytochrome B subunit of NADPH oxidase for 

killing of the parasite.  

 In our laboratory we have developed an in vitro killing assay in which bone 

marrow-derived macrophages (BMM) are infected with L .amazonensis amastigotes 

for 24 hours and then co-cultured with total lymph node (TLN) cells or purified CD4+ 

T cells and B cells isolated from C3H mice infected with L. major (22). Five day co-

culture with either TLN or purified cells from L. major-infected mice promotes a 

significant decrease in the percent L. amazonensis-infected macrophages (22).  

Based on these findings, along with previous knowledge that both nitric oxide and 

superoxide are necessary for macrophage activation to kill L. amazonensis (23), we 

proposed that interferon gamma receptors (IFN-γR) on macrophages would be 

necessary for activation of inducible nitric oxide synthase (iNOS) and induction of 

nitric oxide (NO) to kill intracellular parasites.  We also hypothesized that stimulatory 

Fc gamma receptors (FcγR) that bind immunoglobulin (Ig)G antibodies and NADPH 

oxidase would be required for production of superoxide within the phagolysosome to 

kill L. amazonensis. To test these hypotheses we used BMM from wild-type C57Bl/6 

(B6) mice along with BMM from IFN-γR-/-,iNOS-/-, FcγR-/- and CytoB-/- mice on a B6 

background.  BMM were harvested, infected with L. amazonensis and co-cultured 
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with either TLN cells or purified CD4+ T cells and B cells from the lymph nodes of 

mice infected for 4 weeks with L. major.  A transwell system was utilized so cells 

from different mice were never in direct contact.  L. amazonensis-infected BMM co-

cultured with total or purified lymph node cells from L. major-infected mice were not 

able to kill intracellular parasites in the absence of IFN-γ, iNOS, FcγR or CytoB 

(Figure 1A, black bars).  In contrast FcγR-/- or CytoB-/- BMM had non deficit in killing 

L. major, while IFNγ-R-/- and iNOS-/- BMM infected with L. major were not able to kill 

the parasite.  Therefore, as previously described, killing of intracellular L. major 

requires the presence of IFN-γR and iNOS.  In comparison, killing of L. amazonensis 

within macrophages requires the presence of IFN-γR, iNOS, FcγR and Cytochrome 

b558.   

The presence or absence of superoxide was confirmed in wild-type and null 

macrophages after L. amazonensis infection via the nitro blue tetrazolium (NBT) 

assay, which detects production of superoxide via formation of a blue formazan 

precipitate.  There was no superoxide production from FcγR-/- or Cyto B-/- 

macrophages infected with L. amazonensis in the co-culture as compared to wild 

type C57Bl/6 macrophages (Figure 1B).  These findings indicate that superoxide 

production requires the presence of cytochrome b558 and the presence of functional 

FcγR. 

 

Direct correlation between increased nitrite production and a decreased 

percentage of macrophages infected with L. major. 
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 We know CD4+ T cells play a key role during Leishmania infection by 

producing interferon gamma (IFN-γ) which functions to activate infected 

macrophages to eliminate intracellular pathogens (28).  Macrophage IFN-γR binding 

of INF-γ activates inducible iNOS to produce NO (5).  When BMM from IFN-γR-/- and 

iNOS-/- mice were infected with L. amazonensis or L. major and co-cultured with TLN 

cells from L. major-infected mice, there was a significant decrease in nitrite 

production as compared to all other groups (Figure 2A). Analysis of nitrites and 

percent infected macrophages showed a direct linear correlation between parasite 

killing and increasing amounts of nitrites from L. major-infected BMM (Figure 2B).  

This finding confirms that production of NO by L. major-infected macrophages is 

necessary to kill the parasite as IFN-γR-/- and iNOS-/- mice are not able to produce 

nitrite in response to infection.  In comparison, when BMM are infected with L. 

amazonensis and co-cultured we do not see a direct linear correlation with NO 

production (Figure 2B); confirming that NO alone is not sufficient to kill L. 

amazonensis, as previously described (23). 

 

Superoxide is detected in the co-culture system at day 5   

 Our laboratory has shown that that macrophages require only NO to kill L. 

major, while they require both NO and superoxide to kill L. amazonensis (23).  In 

figure 1 we demonstrate that FcγR-/- and cytoB-/- mice are unable to eliminate L. 

amazonensis infection.  Based on this knowledge, we wanted to determine if the 

production of superoxide occurs temporally to the time killing of L. amazonensis 

within infected macrophages.  We previously demonstrated macrophage killing of L. 
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amazonensis in our in vitro system occurs at day 5 following co-culture with either 

total lymph node cells or purified CD4+ T cells and B cells (22).  To detect 

superoxide in vitro we utilized NBT staining.  While a small amount of formazan 

precipitant was observed early (at 30 minutes), significant production of formazan 

only occurred at day 5 of co-culture, which corresponds to the time of L. 

amazonensis killing in infected macrophages (Figure 3A and B). 

 

Assembly of NADPH oxidase subunits gp91phox and p67phox occurs early 

during co-culture and is directly adjacent to the parasite.  

 The NADPH oxidase complex plays a critical role in phagocytic killing of 

ingested microorganisms via generation of superoxide.  NADPH oxidase subunits 

will assemble on the membrane of phagosomes immediately during and following 

phagocytosis (31).  Based on the 5 day delay of superoxide production we observe, 

we wanted to determine the kinetics of NADPH oxidase complex assembly in our 

system.  We harvested L. amazonensis-infected BMM 1, 2, 3, 4 and 5 days following 

co-culture and performed immunofluorescence.  We show that co-localization of 

gp91phox, a membrane bound NADPH oxidase subunit, and p67phox, a cytosolic 

subunit, occurs by day 1 of co-culture (Figure 4, Day 1).  At all time points measured 

(days 1-5) co-localization of gp91phox and p67phox was appreciated as observed via 

confocal microscopy (Figure 4, Day 5 and data not shown) and as measured by 

Pearson’s coefficient of co-localization (Table 1).  These data indicate that although 

NADPH oxidase complexes appear to be assembled by day 1, there is not 

production of measurable superoxide until day 5 (Figure 3).  We additionally wanted 
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to determine the sub-cellular location of NADPH oxidase gp91phox and p67phox 

subunit assembly.  LAMP1 labeling was used to identify the location of late 

endosomes, the compartment which would contain the parasite which is also known 

as the parasitophorous vacuole (PV) (2).  We demonstrated that co-localization of 

gp91phox and p67phox occurred directly adjacent to DAPI-labeled parasite DNA but 

co-localization was not present on LAMP1 positive PV (Figure 5).  This may suggest 

that NADPH oxidase assembly occurs either on the parasite membrane itself, or on 

an inner membrane of a multi-lamellar endocytic vesicle, separate from the PV.  

NADPH oxidase assembly was not occurring at the plasma membrane, but instead 

at the intracellular compartment containing L. amazonensis, which may indicate that 

superoxide production occurs within established PV’s. 

 

Wortmannin inhibits production of superoxide. 

 Superoxide is generated when the NADPH oxidase complex is assembled 

and activated (24).  In neutrophils production of superoxide is mediated by the 

p40phox subunit of the NADPH oxidase complex and is dependent upon activation of 

the PI3K signaling pathway activated by FcγR (31).  We previously demonstrated a 

requirement for FcγR and found that gp91phox and p67phox subunits co-localize 

without superoxide production at days 1-4 in co-culture.  We hypothesized that 

generation of superoxide may be sensitive to PI3K inhibition.  To test this hypothesis 

we added wortmannin, a PI3K inhibitor, at day 5 of co-culture to macrophages 30 

minutes prior to NBT and assessed formazan precipitants.  We did not observe 

formazan precipitants in the presence of wortmannin, indicating superoxide was not 
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produced (Figure 6A, right and C).  In the absence of wortmannin, as previously 

described, a measurable amount of formazan precipitant was detected (figure 6A, 

left and C) and macrophage-mediated killing of L. amazonensis was observed 

(figure 6A, right inset).  Wortmannin has a short half-life (33) so a time course was 

performed to determine the incubation time necessary to inhibit parasite killing.  

When wortmannin was added 3 hours prior to addition of NBT, a small amount of 

formazan precipitate was measurable (Figure 6B, left and C).  This indicates that 

although wortmannin inhibits superoxide production, it is only for a limited time 

period and superoxide production appears to be a continual process, so we still 

observe killing of L. amazonensis.  To test whether continuous wortmannin 

treatment would inhibit parasite killing we added the drug twice daily beginning at 

day 1 of co-culture and continued until day 5.  All BMM were then harvested cells at 

day 5.  Cells from the cultures that received twice daily treatments beginning at 

either day 1 or 2 were not viable, indicating continuous wortmannin treatment for that 

time period was detrimental to cell viability (data not shown).  When wortmannin was 

added beginning at day 3 and continued twice daily until day 5 we not only did not 

detect superoxide (Figure 6B, right and C), but we also did not detect any decrease 

in L. amazonensis parasites within infected macrophages (Figure 6B, right inset).  

These findings indicate that the PI3K pathway is necessary for production of 

superoxide at day 5 in co-culture and that superoxide production is again, necessary 

for killing of L. amazonensis in our system. 
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Discussion 

 Here we propose a novel antibody-mediated mechanism of macrophage 

activation to kill an intracellular pathogen.  Previous work has documented that L. 

amazonensis parasites resist macrophage killing as compared to L. major (10, 29).  

Using an established in vitro model, we have determined that there are two key cell 

types from the draining lymph node of L. major-infected mice required to kill L. 

amazonensis within macrophages; CD4+ T cells and B cells (22) (8).  Based on 

these findings we wanted to determine the means by which these specific cell types 

could activate infected macrophages to kill the parasite.  It is well documented that a 

polarized T helper 1 (Th1) immune response with activated CD4+ T cells is 

necessary to activate infected macrophages to kill L. major (28).  We suggest the 

role of CD4+ T cells in our system is likely to produce IFN-γ which would bind the 

IFN-γR to activate iNOS production of NO.  When IFN-γR-/- and iNOS-/- 

macrophages are plated in the in vitro assay we demonstrate that there is neither 

killing of L. major or L. amazonensis, indicating this pathway for macrophage 

activation of NO production is required during both infections (Figure 1A).  The role 

of B cells in our assay was less understood, although it had been determined that 

antibodies were necessary for parasite killing (22) (8).  Superoxide production has 

been documented primarily during phagocytosis, when assembly of NADPH oxidase 

is triggered by binding of immunoglobulins to FcγR on the surface of macrophages 

(12).  To determine if this macrophage activation pathway for superoxide is required 

during L. amazonensis infection we utilized BMM from FcγR common chain and 

cytochrome b558 (cytoB) knockout mice in our assay.  When the FcγR-/- or cytoB-/- 
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BMM are infected with L. amazonensis and co-cultured there is not production of 

superoxide in vitro nor do we observe killing of the parasite (Figure 1A and B).  

Taken together, these findings indicate that the FcγR common chain on 

macrophages is required, as is NADPH oxidase, for production of superoxide and 

thus, killing of intracellular L. amazonensis at day 5 of co-culture.  

 Using the in vitro model (23) we determined there is not a direct correlation 

between increased nitrite production and killing of L. amazonensis in our system, 

indicating that nitric oxide (NO) alone is not sufficient to kill this parasite (Figure 2B) 

(23).  When superoxide is present in our in vitro system along with NO, we detect 

killing of L. amazonensis in macrophages (23).  Here we show that there is 

detectible superoxide production via NBT on day 5 of co-culture, which corresponds 

to the day at which we observe parasite killing (Figure 3A and B).   

 The NADPH oxidase complex is composed of both membrane-bound and 

cytosolic subunits that assemble for the production of superoxide.  Assembly has 

been well documented to occur in both neutrophils and macrophages at the time of 

phagocytosis (14, 25).  Here we demonstrate that NADPH oxidase co-localization of 

gp91phox and p67phox occurs at day 1 of co-culture and is present over time until day 

5 (Figure 4) (Table 1).  Interestingly, we see co-localization of these two subunits 

directly adjacent to the parasite, but not on the LAMP 1 positive parasitophorous 

vacuole (PV) (Figure 5).  Furthermore, at day 5 we do not find NADPH oxidase 

complex assembly associated with either identifiable phagocytic cups or small 

phagosomes that would suggest NADPH activation via FcγR-mediated uptake of 

antibody-opsonized parasites.  Our findings indicate that NADPH oxidase assembly 



www.manaraa.com

 94

is either occurring directly on the parasite membrane itself, or on a separate host cell 

membrane within the PV.  During L. pifanoi promastigote infection of macrophages 

the immature form of gp91phox was localized to the PV.  The same study showed L. 

pifanoi increased heme degradation which blocked the maturation of gp91phox and 

prevented NADPH oxidase assembly (26).  The PV during Leishmania infection is 

an acidic compartment that acquires molecules such as LAMP1 and 2, rab7 and 

macrosialin from the endocytic compartment (2, 6).  During L. amazonensis infection 

of macrophages the PV is very large and often contains multiple amastigotes which 

have an attachment site to the PV membrane itself (4).  It is possible that L. 

amazonensis amastigotes are encased in a closely-associated host cell membrane 

that is not part of the larger PV, or a multilamellar body; although this hasn’t been 

documented.  Multilamellar bodies are lysosomal organelles which contain multiple 

layers of cell membranes which can be physiologically normal, such as those that 

produce surfactant in alveolar type II cells within the lung, or can accumulate during 

lysosomal storage diseases and autophagy (15).  L. donovani has been documented 

to induce autophagic machinery in human bone marrow cells (19), and this coupled 

with these preliminary findings might suggest L. amazonensis infection may be 

susceptible to superoxide-induced host cell autophagy and multilamellar body 

formation (11).  The other possibility would be that the parasite itself has taken up 

NADPH oxidase subunits.  Uptake of certain host cell components by Leishmania 

species has been documented.  MHC class II and H-2M molecules have been 

documented to undergo internalization and degradation within amastigotes (2).  In 

either case, we show that NADPH oxidase assembly occurs directly on or adjacent 
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to the amastigote early in infection and this close associate may function to increase 

the killing ability of superoxide as it would be closely associated with the parasite. 

 Although NADPH oxidase co-localization of gp91phox and p67phox occurs early 

in our co-culture system, measurable superoxide production is not appreciated until 

day 5 (Figure 3).  During L. amazonensis infection it has been shown that entry of 

the parasite into host cells occurs via a Rac-1-independent mechanism (20).  Rac 

has a pivotal role during assembly of NADPH oxidase and therefore there may not 

be NADPH oxidase activation of superoxide during phagocytosis of L. amazonensis 

(20).  We did not determine if NADPH oxidase was assembled at the time of 

phagocytosis, but our findings indicate that there is likely assembly of the complex 

by day 1 and there is a PI3K-dpendent signal for superoxide production at day 5.  In 

both COSphox cells with transgenes for the separate NADPH oxidase subunits and in 

human neutrophils it has been shown that the p40phox subunit is essential in 

stimulating superoxide production (7, 30).  A more recent study showed that 

although NADPH oxidase can be fully assembled, superoxide is not produced until 

the p40phox subunit stimulates activity of the NADPH complex via a PI3K signal (31).  

To determine if the PI3K signaling pathway was necessary in our system we treated 

co-cultured cells with wortmannin, which is a specific inhibitor of PI3K (32).  We 

show that with a 30 minute pre-incubation with wortmannin, superoxide is not 

detected via NBT, indicating superoxide production is inhibited by the drug (Figure 

6A, right and C).  We also show that treatment of co-cultured cells for 3 days with 

twice daily applications of wortmannin not only inhibits superoxide production, but 

also inhibits killing of L. amazonensis (Figure 6B, right and C).  We can conclude 
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that the PI3K pathway is an important signaling mechanism for superoxide 

production and thus killing of the parasite. 

 We report here that during an established infection with L. amazonensis 

amastigotes, macrophages can become activated to produce superoxide via FcγR, 

NADPH oxidase and PI3K dependent mechanism and thus kill the parasite in 

combination with NO.  FcγR-mediated intracellular killing has been documented 

during Staphlococcus aureus infection in human monocytes (36) and the signaling 

pathway for activation of killing was protein kinase C (PKC), which can be activated 

by PI3K (34).  These studies observed killing of bacteria during a short time period 

immediately following phagocytosis (34-36), while in our case we see activation of 

this pathway late in infection.  We propose antibodies in our system are produced by 

B cells following stimulation with L. major antigen and adequate amounts of these 

antibodies are perhaps not produced until day 5 in co-culture.  These antibodies 

then engage FcγR in a manner that can activate pre-assembled NADPH oxidase 

complexes associated with intracellular parasites.  We suggest this pathway of 

macrophage activation during infection with intracellular pathogens be termed 

antibody-enhanced intracellular killing.  This pathway is another example of the role 

of antibodies during infection and describes a role for extracellular antibodies in 

macrophage activation and killing of intracellular organisms within an intracellular 

compartment. 
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Figure 1. L. amazonensis-infected macrophages require IFN-γR, iNOS, FcγR, 
and CytoB for parasite killing.  A.  BMM infected with L. amazonensis or L. major 
and co-cultured with total lymph node cells from L. major-infected mice. Parasite 
number was manually determined via light microscopy.  For L. amazonensis 
infection different symbols represent a statistically significant difference (p < 0.001) 
and for L. major infection different letters indicate a statistically significant difference 
(p < 0.05). B.  Cultures were incubated with NBT for 90 minutes at day 5.  Basophilic 
cytoplasmic precipitate (formazan) is indicative of superoxide production within 
infected cells as measured by nitro blue tetrazolamide (NBT). Cells counterstained 
with eosin and viewed using light microscopy at 40x magnification.  Results are 
representative from three separate experiments. 
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Figure 2. Decreased nitrite production from macrophages lacking IFN-γR and 
iNOS and direct correlation between increased nitrite production and L. major 
killing by infected macrophages.  A. Nitrite production as measured by greiss 
assay.  Macrophages were infected with L. amazonensis or L.major and co-cultured 
with purified CD4+ T cells and CD19+ B cells from mice infected with L. major. * 
represent statistically significant differences (p < 0.01).  Results are from three 
separate experiments ± SEM.  B. Correlation of nitrite production and the 
percentage of infected macrophages.  There is a linear correlation (R2=0.998) 
between the percentage of infected macrophages and nitrite production during L. 
major infection but not during L. amazonensis infection (R2=0.0530), indicating nitric 
oxide isn’t sufficient for killing L. amazonensis.  Results are from two to three 
separate experiments. 
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Figure 3. Lack of significant superoxide production from L. amazonensis -
infected bone marrow-derived macrophages until day 5. BMM were infected with 
L. amazonensis amastigotes for 24 hours, washed to remove extracellular parasites 
and co-cultured with TLN cells from a C3H mouse infected for 4 weeks with L. major 
along with freeze-thawed L. major promastigote antigen and cultured at 37°C, 5% 
CO2.  Cultures were incubated with NBT for 90 minutes at days indicated.  
Basophilic cytoplasmic precipitate (formazan) is indicative of superoxide production 
within infected cells as measured by NBT. A. Cells counterstained with eosin and 
viewed using light microscopy at 40x magnification.  B. Score based on the number 
of cells with basophilic formazan precipitants.  Values expressed as mean value ± 
SEM.  *P < 0.05.  Results are from three separate experiments. 
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Figure 4.  Co-localization of gp91phox and p67phox at days 1 and 5 of co-culture. 
BMM infected with L. amazonensis and co-cultured with TLN cells from L. major-
infected mice. Coverslips were recovered at the indicated time points, fixed and 
labeled with gp91phox (red), p67phox (green) and DAPI (blue).  Sequential scanning 
confocal microscopy (x60, oil) analysis of gp91phox and p67phox at 1 and 5 days in co-
culture. Co-localization is represented in yellow (composite inset).  White circle 
marks parasite presence (blue) surrounded by co-localized subunits (yellow).  Data 
is representative of three separate experiments.  
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Figure 5.  No co-localization of gp91phox and LAMP1 at days 1 and 5 of co-
culture. BMM infected with L. amazonensis and co-cultured with TLN cells from L. 
major-infected mice. Coverslips were recovered at the indicated time points, fixed 
and labeled with gp91phox (red), LAMP1 (green) and DAPI (blue).  Sequential 
scanning confocal microscopy (x60, oil) analysis of gp91phox and LAMP1 at 1 and 5 
days in co-culture.  White circle marks parasite presence (blue) surrounded 
immediately by gp91phox (red) without LAMP1 (green).  Data is representative of two 
separate experiments. 
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Day 1 Day 2 Day 3 Day 4 Day 5 
0.78 0.65 0.80 0.76 0.82 

 
 
Table 1.  Summary of Pearson’s co-localization coefficients .  Calculated by 
Olympus Fluoview version 2.1b software analysis of gp91phox and p67phox co-
localization.  Score of 1 indicates perfect co-localization, 0 indicates random co-
localization is occurring and  -1 indicates exclusion.  Results are of a single field of 
view from one experiment and the trend was confirmed in 3 separate experiments. 
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Figure 6.  Wortmannin inhibits production of superoxide and killing of L. 
amazonensis at day 5.  A.  Cultures were incubated with NBT for 90 minutes at day 
5, with or without a 30 minute pre-incubation of 100nM wortmannin.  Inset: diff-quick 
stained photomicrograph at day 5.  B.  Cultures were incubated with NBT for 90 
minutes at day 5, with a pre-incubation, as indicated, of 100nM wortmannin.  Cells 
counterstained with eosin.  Inset: diff-quick stained photomicrograph at day 5 with 
wortmannin treatment twice daily for 3 days.  C.  Score based on the number of cells 
with basophilic formazan precipitants.  Values expressed as mean value ± SEM.  *P 
< 0.05.  Results are from two separate experiments. 
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Chapter 5 
 

GENERAL CONCLUSIONS 
 
Summary 

 The work presented in this dissertation demonstrates that B cells play a 

necessary role in an effective Th1-mediated immune response towards Leishmania 

amazonensis.  We studied the host immune response of two mouse strains, 

C3HeB/FeJ (C3H) and C57Bl/6 (B6), to a co-infection with L. major and L. 

amazonensis.  Our initial findings indicated a differential immune response between 

these two strains; C3H mice were able to control infection while B6 mice developed 

chronic, non-healing lesions.  Using an in vitro co-culture model, we demonstrate 

that the inability of B6 mice to heal a co-infection with L. major and L. amazonensis 

correlates with a defect in the B cell response, rather than in the CD4+ T cell 

response.  Overall, our findings indicate that B cells and their antibodies are 

necessary, but not sufficient, for killing L. amazonensis and their antibodies are just 

one of several critical immune components required for killing.   

 Analysis of the B cell population of both C3H and B6 mice during co-infection 

indicates there is a difference in the germinal center B cell response during co-

infection with both L. major and L. amazonensis.  We demonstrate that at 2 and 5 

weeks post-infection B6 mice have fewer germinal center B cells, fewer germinal 

center B cells that have undergone isotype switching, fewer memory B cells and 

fewer antigen-specific IgG2c-producing cells in the draining lymph node, as 

compared to C3H during co-infection.  We also show that IL-21 production in both 

mouse strains is similar at 2 weeks, indicating the differences we see between these 
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mouse strains is perhaps due to an intrinsic B cell defect, rather than a defect in the 

production of IL-21 within germinal centers.  To heal an L. amazonensis infection, 

mice must have activated B cells.  The deficit within B6 mice that prevents healing of 

the co-infection may be partly due to an intrinsic B cell defect within the germinal 

center. 

 Utilizing our in vitro co-culture system two key findings have been discovered; 

(1) there are 2 specific cell types from the draining lymph node of L. major-infected 

mice to resolve of L. amazonensis infection; CD4+ T cells and B cells (7) and (2) 

macrophages require both nitric oxide (NO) and superoxide to kill intracellular L. 

amazonensis (8).  To determine the mechanism of these two cell types in activation 

of infected macrophages we first infected macrophages from knockout mice (IFN-γ-/-, 

iNOS-/-, FcγR-/-, CytoB-/-) with L. amazonensis or L. major.  We determined that 

interferon gamma (IFN-γ) receptor, Fc gamma receptor (FcγR) common chain, 

inducible nitric oxide synthase (iNOS) and cytochrome B subunit of NADPH oxidase 

(CytoB) are all necessary for macrophage activation and killing of L. amazonensis.  

NADPH oxidase assembly of gp91phox and p67phox occurs early in vitro, by day 1, 

and assembly occurred directly adjacent to the amastigote form of the parasite.  

Although NADPH oxidase was assembled early, measurable superoxide production 

was only detectable at day 5 in vitro, indicating there was a signal or signals for 

superoxide production other than complex assembly.  Using wortmannin, a 

phosphoinositide 3-kinase (PI3K) inhibitor, we demonstrate inhibition of superoxide 

production at day 5.  This indicates that PI3K may be required for superoxide 

production at this late stage of infection.  There appear to be two main mechanisms 
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by which infected macrophages are activated to kill L. amazonensis.  The first 

requires L. major-specific CD4+T cells to produce IFN-γ that binds IFN-γ receptors to 

induce NO production via iNOS.  The second pathway requires L. major-specific B 

cell production of antibodies that may bind Fcγ receptors and likely trigger PI3K, 

triggering activation of assembled NADPH oxidase to produce superoxide.  This 

second mechanism is a novel pathway for macrophage activation to kill an 

intracellular pathogen in which extracellular, antibodies appear to signal the infected 

cell to produce intracellular superoxide for killing.  

 

Discussion 

A deficient germinal center B cell response by C57Bl/6 mice correlates with 

loss of macrophage-mediated killing of L. amazonensis. 

Infection of C3H mice with L. amazonensis leads to chronic disease with large 

non-resolving cutaneous lesions and high parasite loads (4) while the same mouse 

infected with L. major stimulates a healing cell-mediated immune response (10).  

Our laboratory and others have shown that Th1 immunity associated with L. major  

infection provided significant protection against subsequent L. amazonensis infection 

(2, 12, 13).  Similar to the cross-protection observed in C3H mice, B6 mice first 

infected with L. major and subsequently challenged with L. amazonensis either have 

small lesions (unpublished observations) or healed lesions, but interestingly, B6 

mice do not heal a simultaneous infection with both L. major and L. amazonensis (1, 

2).  Our data extends the knowledge concerning why B6 mice do not heal a 

simultaneous co-infection by first defining that B cells from infected B6 mice are 
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ineffective in promoting parasite killing compared to B cells from infected C3H mice 

(1).  We demonstrate that the B cell defect during co-infection corresponds to a poor 

germinal center response within the draining lymph node as measured by the 

number of germinal center B cells, isotype-switched B cells within the germinal 

center, memory B cells, and antigen-specific antibody-producing cells.  Altogether, 

these findings indicate that B cells and their antibodies play a key role during 

Leishmania amazonensis infection and the B cell response, specifically the germinal 

center response differs between mouse strains.   

 

Antibody-Enhanced Intracellular Killing  

 During an established infection with L. amazonensis amastigotes, 

macrophages can become activated to produce superoxide via an FcγR, NADPH 

oxidase and PI3K-dependent mechanism to kill the parasite in combination with 

nitric oxide (NO).  The pathway by which NO is generated within infected 

macrophages is well established.  Macrophages are classically activated by IFN-γ 

produced by CD4+T cells, along with exposure to microbes or microbial products, 

and are identified via production of nitric oxide (NO) (5, 6).  Here we demonstrate the 

role of CD4+ T cells is to produce IFN-γ which binds the IFN-γR to activate iNOS 

production of NO (Figure 1).  When IFN-γR-/- and iNOS-/- macrophages are utilized in 

our in vitro co-culture assay we show that there is neither killing of L. major nor L. 

amazonensis, confirming the importance of this pathway in activation of the 

Leishmania-macrophage and subsequent production of NO to remove intracellular 

parasites.   
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The novel mechanism of Leishmania-infected macrophage superoxide 

production was determined as a part of this dissertation.  Superoxide was primarily 

thought to be generated immediately during phagocytosis when NADPH oxidase 

complexes were assembled upon the phagosomal cup and membrane (9).  

Phagocytosis can be initiated via FcγR-ligation of opsonized particles as previously 

established (11).  We had already determined that B cells were a necessary part of a 

productive immune response by C3H mice against L. amazonensis.  We thus 

wanted to further determine the mechanism by which B cells induce superoxide 

production in activated macrophages.  We determined that FcγR common chain and 

NADPH oxidase complex were required to kill L. amazonensis at day 5 in vitro.  

Interestingly, while NADPH oxidase complex formation occurred by day 1 as 

determined by co-localization of gp91phox and p67phox, measurable superoxide 

production was not observed until day 5 of co-culture which is much later than the 

initial phagocytic event.  Based on this finding and the knowledge that NADPH 

oxidase was assembled at early time points (day 1) we showed via wortmannin 

inhibition that the PI3K signaling pathway is likely required for superoxide production 

at this late time point.  A recent study described that, although assembly of the 

NADPH oxidase complex can occur within neutrophils, production of superoxide 

required the p40phox subunit of the complex and PI3K signaling activation (11).  We 

would propose that superoxide production via this pathway is also occurring in L. 

amazonensis-infected macrophages at day 5 of in vitro co-culture.  Taken together, 

all of these findings suggest there is an extracellular signal, most likely triggered by 

binding of antibodies to FcγR that results in wortmannin-sensitive superoxide 
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production by NADPH oxidase complexes.  We know B cells are necessary in our in 

vitro co-culture system for intracellular parasite killing, as is L. major antigen, and 

therefore propose antigen-antibody complexes produced in the system over time 

bind to stimulatory FcγR on the macrophage surface to trigger intracellular killing of 

L. amazonensis via PI3K and pre-assembled NADPH oxidase-dependent signals 

(Figure 1).  We hypothesize these immune complexes are small and therefore are 

internalized with FcγR endocytosis as opposed to phagocytosis.  This would be 

consistent with the fact that we do not see gp91phox and p67phox co-localization at the 

plasma membrane surface, which would be expected if phagocytosis of these 

complexes was occurring.  FcγR-mediated endocytosis is not dependent on the 

cytoskeleton, so we should be able to block FcγR-mediated phagocytosis by 

cytochalasin-D, an inhibitor of actin polymerization, and still observe macrophage 

activation and parasite killing (3).  FcγR-mediated intracellular killing has been 

documented during Staphylococcus aureus infection in human monocytes (14), but 

not at such a late time point as observed in our system (day 5).  This role for 

antibodies in killing of L. amazonensis could likely be applied to any intracellular 

pathogen associated with pre-assembled NADPH oxidase complexes and 

represents a novel mechanism for macrophage activation. 

 

Recommendations for future studies 

 One of the future goals of this research is to understand why B6 mice do not 

heal a co-infection with L. major and L. amazonensis as compared to C3H mice.  

Additional experiments are necessary to determine the mechanism behind the 
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germinal center defect during early infection of B6 mice.  Although we have evidence 

that there is adequate IL-21 production in B6 mice, it would be recommended that 

the Tfh cell population be analyzed in both mouse strains to determine if there is a 

difference in the number of Tfh cells present within germinal centers.  It would also 

be necessary to determine if there is a difference in surface expression of the IL-21 

receptor on B cells because although there may be adequate production of IL-21 by 

Tfh cells, B6 B cells may have a decreased expression of the receptor and therefore 

decreased IL-21 stimulation.  Continued exploration of the B cell compartment of B6 

mice is also warranted, as it appears that it may not be simply their production of 

IgG2c as compared to IgG2a by C3H mice that leads to the differential healing 

phenotype, but instead a difference in the germinal center response.  Additionally, in 

vivo experiments would be suggested to determine if it is possible to overcome the B 

cell defect during co-infection of B6 mice.  An F1 generation of B6 x C3H mice could 

be generated for cell transfer experiments.  These mice could be irradiated and then 

reconstituted with CD4+T cells from either co-infected C3H or B6, as well as B cells 

from co-infected C3H mice to determine if healing would occur.  A similar experiment 

could be performed with the transfer of B cells from co-infected B6 mice and we 

would hypothesize these mice would develop non-healing chronic lesions. 

 A second goal for the research presented in this dissertation is to better 

characterize the mechanism of antibody-enhanced intracellular killing.  First and 

foremost, we could confirm the PI3K signaling pathway is activated by day 5 by 

performing western blot analysis of phosphorylated AKT (pAKT) over time.  We 

would hypothesize that pAKT would not be detected early but would be present at 
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day 5 of co-culture when we observe measurable superoxide production.  Additional 

experiments are also necessary to better define the pathway by which extracellular 

antibodies or antigen-antibody complexes activate PI3K and to determine if PI3K is 

activating the p40phox subunit of the NADPH oxidase complex to produce 

superoxide. Immunofluorescence could be used to track antigen-antibody 

complexes from the extracellular membrane, after which they may be taken up via 

FcγR-mediated phagocytosis.  If so, we would like to assess trafficking of these 

complexes to determine if they are targeted to the parasitophorous vacuole.   FcγR-

mediated phagocytosis of these complexes may not occur, as we do not see 

NADPH oxidase assembly at the membrane of macrophages at day 5, indicating 

phagocytosis is likely not occurring.  If this is the case, we might hypothesize 

antibody binding of these receptors simply triggers an intracellular signal that 

activates PI3K.  We would propose this intracellular signal would be activated by 

FcγR-mediated endocytosis and to test this we could block FcγR-mediated 

phagocytosis by cytochalasin, an inhibitor of actin polymerization.  We would expect 

to still observe killing of L. amazonensis.  Experiments would also be warranted to 

determine if the other components of the NADPH oxidase complex are assembled 

early during infection, including the p40phox subunit, as this is the subunit required for 

superoxide production via PI3K signaling.  We would also like to better characterize 

the cell membranes upon which gp91phox and p67phox are assembled.  We could use 

immunofluoresence to determine if these membrane-bound compartments are early 

endosomes (Rab5+), late endosomes (Rab7+) or recycling endosomes (Rab11+).  

Finally, it would be interesting to determine if other intracellular pathogens that 
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cause chronic disease, such as but not limited to Brucella, Mycobacterium and/or 

Rhodococcus can be killed via antibody-enhance intracellular killing.  If in fact this is 

true, we may be better able to target treatment strategies that either activate infected 

cells to themselves kill the pathogen or target drugs to the intracellular compartment 

containing the pathogen; thus aiding in the development of treatments and/or cures 

for chronic disease caused by intracellular organisms. 
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Figure 1.  Proposed model for activation of L. amazonensis-infected 
macrophages by L-major derived CD4+ T cells and B cells.  Bone marrow-
derived macrophages are infected with L. amazonensis amastigotes and then co-
cultured with CD4+T cells and B cells derived from an L. major-infected mouse.  
CD4+T cells produce IFN-γ that binds IFN-γ receptors and activate iNOS production 
of nitric oxide within the parasitophorous vacuole.  B cells produce antibodies that 
bind stimulatory Fcγ receptors on the macrophage that via PI3K signaling, activate 
assembled NADPH oxidase to produce superoxide in the parasitophorous vacuole.  
The combination of nitric oxide and superoxide is lethal to L. amazonensis. 
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